ブロードバンドアクセス【III型】
技術参考資料

第3版

平成 年 月
目次

まえがき ... □

第Ⅰ編 用語の定義
□ 用語の定義 ... □

第Ⅱ編 サービス仕様
□ サービス概要 ... □
□ サービスメニュー ... □
□ 契約者回線品目 ... □
□ 伝送用契約者回線品目 □
□ ルーティング機能 .. □
□ 回線構成例 ... □
□ 電気通信回線設備と端末設備の分界点 □
□ 規定項目 ... □
□ ネット方式における規定項目 □
□ ディス方式における規定項目 □
□ ティス方式における規定項目 □

第Ⅲ編 ユーザ端インターフェース
□ イーサネット方式のユーザ端インターフェース仕様
□ 基本型インターフェース □
□ ケース型インターフェース □
□ イーサネット型インターフェース □
□ ディス型インターフェース □

□ ディス方式のユーザ端インターフェース仕様
□ 基本型インターフェース □
□ ケース型インターフェース □
□ イーサネット型インターフェース □
□ ディス型インターフェース □

□ ティス方式のユーザ端インターフェース仕様
□ 基本型インターフェース □
□ ケース型インターフェース □
□ イーサネット型インターフェース □
□ ディス型インターフェース □
まえがき

この技術参考資料はプロードバンドアクセス【Ⅲ型】（アクセスデータ通信サービスタイプⅢ）に接続する端末設備に必要なインターフェースの技術的情報を提供するものです。なおNTTコミュニケーションズ株式会社はこの資料によって、お客様が接続する端末設備を含めた通信システムとしての品質を保証するものではありません。

また端末設備が具備すべき条件は端末設備等の接続の技術的条件 (平成 年 月 日電技第 号の)で定められています。

今後、本資料の内容はインターフェース条件の追加、変更に合わせて、予告なく変更される場合があります。
第Ⅱ編 用語の定義
用語の定義

ブロードバンドアクセス【Ⅱ型】サービス
主としてデータ通信の用に供することを目的として、当社が指定する事業所で、契約の申込者が指定する場所（サービス取扱所を除きます。）との間において符号の送信・受信を行うための電気通信設備を使用して行う電気通信サービスです。契約条件はアクセスデータ通信サービス契約款に記載しています。

サービス取扱所
ブロードバンドアクセス【Ⅱ型】サービスに関する業務を行う当社の事業所または当社の委託により本サービスを行う者の事業所。

契約者回線
ブロードバンドアクセス【Ⅱ型】サービスの契約に基づき、サービス取扱所またはサービス契約者の指定する建物または構内（これに準ずる区域内を含む、以下同じとする）に設置される電気通信設備とその電気通信設備のある建物又は構内の当社が指定する場所との間に設置される電気通信回線。

伝送用契約者回線群
複数の契約者回線が相互に通信を行うための電気通信設備。

端末設備
回線の一端（団地、ビル内の光ファイバ設備から最短距離にある配線盤）に接続される電気通信設備（電気通信を行うための機械、器具、光ファイバケーブルその他の電気的設備）であって、その設置場所が同一構内（これに準ずるものを含む）又は同一建物内であるものを言う。

分界点
電気通信回線設備の一端と端末設備との接続点。

サービスノード
ブロードバンドアクセス【Ⅱ型】サービスを提供するために、サービス取扱所またはサービス契約者の指定する建物または構内（これに準ずる区域内を含む、以下同じとする）に設置される電気通信設備。

サービスノードに接続し、データの送受信を行う端末設備。

ユーチューブサービス
ネットワークと端末設備との接続条件を規定するもの。
第Ⅲ編 サービス仕様
サービス概要

ブロードバンドアクセス 【型】サービスは、コミュニケーションツールとユーザビリティの間のデータトラフィックの多様なニーズに対応し、パケット交換機能と多様なインターフェースの契約者回線品目（別紙参照）の利用を可能としたサービスです。本サービスでは伝送用契約者回線群品目と契約者回線品目との組み合わせによりサービスを提供します。図 にサービス概要図を示します。
サービスメニュー

本サービスは、基本メニューや用意している契約者回線品目、伝送用契約者回線群、及びルーティング機能の組合合わせで提供いたします。

２．契約者回線品目

ユーザ 接続インターフェースの品目です。品目の内容を表2.1に示します。

<table>
<thead>
<tr>
<th>方式</th>
<th>品目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>イーサネット方式</td>
<td>最大 10BASE-Tの符号伝送可能なもの</td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大 100BASE-TXの符号伝送可能なもの</td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大 100BASE-FXの符号伝送可能なもの</td>
<td></td>
</tr>
<tr>
<td></td>
<td>最大 1000BASE-SXの符号伝送可能なもの</td>
<td></td>
</tr>
</tbody>
</table>

２．伝送用契約者回線群品目

お客様ビジネスとコミュニケーションを結ぶ伝送帯域の品目です。品目の内容を表2.2に示します。

<table>
<thead>
<tr>
<th>品目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最大 10Mb/sの符号伝送可能なもの</td>
</tr>
<tr>
<td></td>
<td>最大 50Mb/sの符号伝送可能なもの</td>
</tr>
<tr>
<td></td>
<td>最大 100Mb/sの符号伝送可能なもの</td>
</tr>
<tr>
<td></td>
<td>最大 150Mb/sの符号伝送可能ものです</td>
</tr>
</tbody>
</table>

２．ルーティング機能

ルーティング機能は、本サービスでレイヤでの交換機能を実現します。ルーティングの方式はスタティックルーティングにて提供します。
回線構成例

回線構成例を図 3-3 に示します。

図 3-3 回線構成例

電気通信回線設備

お客様側

サービスノード

冗長構成面(II)

サービスノード

ハウジングサービス

（注）伝送路の冗長構成を行うのは、回線群重化機能（付加機能）契約時のみ

図 3-4 回線構成例

電気通信回線設備と端末設備の分界点

プロードバンドアクセス【A型】サービスにおける電気通信回線設備と端末設備の分界点は、サービスノードから Initi における配線盤の接続点になります。分界点及び工事・保守上の責任範囲を図 4-4 に示します。

図 4-4 分界点及び工事・保守上の責任範囲

（注）お客様側の状況に応じて、サービスノードにて直接の提供する場合もあります。
指定項目

イーサネット方式における規定項目

イーサネット方式におけるインタフェースのプロトコル構成を表1に示します。

<table>
<thead>
<tr>
<th>レイヤ</th>
<th>規定するプロトコル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上位</td>
<td></td>
</tr>
<tr>
<td>ネットワーク</td>
<td></td>
</tr>
<tr>
<td>データリンク</td>
<td></td>
</tr>
<tr>
<td>物理</td>
<td></td>
</tr>
</tbody>
</table>

ユーザ・端インタフェース

イーサネット方式におけるユーザ・端インタフェースを表2に示します。

<table>
<thead>
<tr>
<th>品目</th>
<th>ユーザ・端インタフェース</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

物理レヤ・データリンクレヤにおける規定項目

イーサネット方式における物理レヤ・データリンクレヤについては第2編を参照してください。

ネットワークレヤ

ブロードバンドアクセス（II型）サービスと端末設備との間で使用するネットワークレヤプロトコルは表1に示されている対照の項に入っているものを使用します。また、IPのサブネットとしてIPアドレスで定義されているものを一部サポートします。

ユーザ・端インタフェースについては第2編を参照してください。

アドレス

本サービスで使用できるIPアドレスは、IPアドレスで指示されているグローバルアドレス及び、IPアドレスで指示されているプライベートアドレスです。

グローバルアドレスについての詳細は第2編を、プライベートアドレスについての詳細は第2編を参照してください。

グローバルアドレスを利用の場合には、IPアドレス等の機関から割り当てられているグローバルアドレスを使用する必要があります。
(1) 最大転送単位

データグラムを送信する場合、一回で送信できるデータ長の上限があります。この上限で転送可能なデータ量をデータグラム単位と呼びます。プラント(端末アクセスポイント)最大転送単位を呼びます。

プロードアフタアクセス【PA型】サービスにおけるデータはデータベースとなります。

(2)

PAはコネクションレス型のネットワークレイヤプロトコルで、パケットを中継するのに最大の努力は行いますがパケット転送を保証しません（ベストエフォート通信）。したがって、ネットワーク設備や端末設備等で異常が発生し、通信相手までパケットが到達しない場合、通信元状況の通知を行う必要があります。RFC1053で規定されているPAというプロトコルを用いて、この機能を実現します。通信元のノードが通信を行う前に、通信先ノードが存在しているかどうかを診断もPAによって行います。

PAはPAの上層に位置し、PAデータグラムとして送信されます。PAの障害を繰り返し発生させないような情報通知や診断を、PAプロトコル上で行います。メッセージを送る際、再度などの配慮はありませんので、ネットワーク上のPAのメッセージは消失することがあります。また、PAメッセージを無限に送信する事は防ぐ為、PAメッセージのエラーやPAメッセージのオフセットがPAであるPAデータグラムPAメッセージを送信します。
表：PPP方式におけるユーザ層インターフェース

<table>
<thead>
<tr>
<th>レイヤ</th>
<th>準拠するプロトコル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上位層</td>
<td></td>
</tr>
<tr>
<td>ネットワーク層</td>
<td>PPP（IP）準拠,</td>
</tr>
<tr>
<td></td>
<td>ICMP準拠,</td>
</tr>
<tr>
<td></td>
<td>PPP over SONET/SDH準拠,</td>
</tr>
<tr>
<td></td>
<td>RFC1661準拠,</td>
</tr>
<tr>
<td></td>
<td>RFC1332準拠,</td>
</tr>
<tr>
<td></td>
<td>RFC791準拠</td>
</tr>
<tr>
<td></td>
<td>RFC792準拠</td>
</tr>
</tbody>
</table>

ユーザ層インターフェース

<table>
<thead>
<tr>
<th>品目</th>
<th>ユーザ層インターフェース</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP</td>
<td>PPPインタフェース</td>
</tr>
<tr>
<td></td>
<td>PPP標準 PPPインタフェース</td>
</tr>
</tbody>
</table>

物理層インターフェース

<table>
<thead>
<tr>
<th>データリンク層</th>
<th>準拠するプロトコル</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPPインタフェース</td>
</tr>
<tr>
<td></td>
<td>PPP標準 PPPインタフェース</td>
</tr>
<tr>
<td></td>
<td>PPP over SONET/SDH準拠,</td>
</tr>
</tbody>
</table>

データリンク層インターフェース

PPP層インターフェース

物理レイヤにおける規定項目

PPP層インターフェース

データリンクレイヤにおける規定項目

データリンクレイヤは物理レイヤの上位レイヤとして、リンクレベルのフレーム誤り検出及び回復を行い、誤りの無いデータ伝送を行うレイヤです。端末設備と他の端末間で送受信される情報のトランスペアレント（透過）な伝送を実現するためのデータ伝送について規定します。

ブロードバンドアクセス[II]型サービスのPPP層においては、データリンクレイヤはPPPインタフェースで規定されるPPPとネットワークレイヤのプロトコルであるPPPをPPP上で扱うためにPPPインタフェースで規定されているPPPをサポートします。PPPの詳細についてはPPPインタフェース、PPPについてはPPPインタフェースを参照してください。

ネットワークレイヤにおける規定

PPP層を参照してください。
方式における規定項目

方式のユーザーネットワークのプロトコル構成を表に示します。プロードバンドアクセス方式はホームネットワークの方式、ホームリモート接続の方式、ユーザーネットワークの方式及びネットワーク接続の方式について規定します。

<table>
<thead>
<tr>
<th>レイヤ</th>
<th>規定するプロトコル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上位</td>
<td></td>
</tr>
<tr>
<td>ネットワーク</td>
<td>サポート対応ネットワークの準拠</td>
</tr>
<tr>
<td></td>
<td>アニサステーション準拠</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>物理</td>
<td></td>
</tr>
</tbody>
</table>

ユーザーネットワーク

方式におけるユーザーネットワークを表に示します。

<table>
<thead>
<tr>
<th>契約者回線品目</th>
<th>サポート対応ネットワークの準拠</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Mb/s</td>
<td></td>
</tr>
<tr>
<td>25Mb/s</td>
<td></td>
</tr>
<tr>
<td>45Mb/s</td>
<td></td>
</tr>
<tr>
<td>135Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20Mb/s</td>
<td></td>
</tr>
<tr>
<td>40Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>45Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100Mb/s</td>
<td></td>
</tr>
<tr>
<td>200Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>135Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150Mb/s</td>
<td></td>
</tr>
<tr>
<td>300Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

ピークセル速度

<table>
<thead>
<tr>
<th>10Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20Mb/s</td>
<td></td>
</tr>
<tr>
<td>40Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>45Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100Mb/s</td>
<td></td>
</tr>
<tr>
<td>200Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>135Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150Mb/s</td>
<td></td>
</tr>
<tr>
<td>300Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

表に示す契約者回線品目における基本項目

<table>
<thead>
<tr>
<th>項目</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td></td>
</tr>
<tr>
<td>10Mb/s</td>
<td>10～20Mb/s</td>
</tr>
<tr>
<td>20Mb/s</td>
<td>20～40Mb/s</td>
</tr>
</tbody>
</table>

表に示す契約者回線品目における基本項目

<table>
<thead>
<tr>
<th>項目</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td></td>
</tr>
<tr>
<td>10Mb/s</td>
<td>10～40Mb/s</td>
</tr>
<tr>
<td>20Mb/s</td>
<td>20～80Mb/s</td>
</tr>
</tbody>
</table>

表に示す契約者回線品目における基本項目

<table>
<thead>
<tr>
<th>項目</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td></td>
</tr>
<tr>
<td>10Mb/s</td>
<td></td>
</tr>
</tbody>
</table>

表に示す契約者回線品目における基本項目
メディア レイヤ

メディア レイヤは物理レイヤの上位レイヤとして、多様なサービスや速度に応じた情報伝送方式を提供するものです。
メディア レイヤの特性は、物理レイヤと独立です。メディア レイヤの機能としては、セル多重分離機能、セルヘッダの生成・識別機能等があり、セルのヘッダ情報に基づいてセル転送を実現します。
メディア レイヤは情報フィールドとヘッダで構成されます。セルヘッダの主な役割は、同じメディア レイヤに属するセルを識別することです。セル転送容量は、ユーザ条件を最大値に設定します。メディア レイヤはセルの情報フィールドに対して、誤り制御等を全て処理せず、透過的に転送します。

ブロードバンドアクセス (型) サービスでは、ネットワーク標準 (TCP/IP) 機能特性、データ表連 (xFFFF) レイヤ仕様 (PPP) 標準 (PPP 規定)、ループ標準 (link) (データ転送制御) に準拠します。

サービス レイヤ

サービス レイヤは、メディア レイヤと上位レイヤとの間の対応関係をするセパレート 組立、誤り検出などを行います。基本的に、ネットワーク レイヤで複数のパケットを同時送受信できる多重機能はありません。
ブロードバンドアクセス (型) サービスでは、ネットワーク標準 (PPP) に基づき定義されている PPP を準拠します。サービス レイヤにおける詳細は、PPP 標準 (RFC1055) を参照してください。
サービス レイヤでネットワーク レイヤを終端しない場合があります。

ネットワーク レイヤ

ネットワーク レイヤでは、メディア レイヤとネットワーク レイヤとのマッピング機能を提供します。
ブロードバンドアクセス (型) サービスでは、ネットワーク標準 (PPP) に基づき定義されている PPP の詳細は、PPP 標準 (RFC1055) を参照してください。

ネットワーク レイヤの詳細については、PPP 標準を参照してください。

ネットワーク レイヤ

ネットワーク レイヤを参照してください。
第Ⅱ編 ユーザ 網インターフェース
イーサネット方式のユーザ 網インターフェース仕様

イーサネット方式のユーザ 網インターフェース

イーサネット方式のユーザ 網インターフェースは物理的、電気的及び論理的条件から構成されます。

イーサネット方式のユーザ 網インターフェースは ISO/IEC8802-3 10BASE-T に準拠し、10 Mbit/s の転送速度でベースバンド信号の転送を行います。

本インタフェースにおける規定点を図 1.1.1 に示します。

(1) 物理的条件

ツイストペアケーブルの仕様及びツイストペアケーブルをコネクタに接続するためのコネクタの規格

(2) 電気的条件

ツイストペアケーブルとサービスノードを接続するための電気信号レベルの規格等

(3) 論理的条件

ツイストペアケーブルとサービスノードの間で信号を送受信するための伝送フレーム構成の構成等

図 1.1.1 ユーザ 網インターフェース規定点

(1) 主要諸元

表 1.1.1 に主要諸元を示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形式</td>
<td>R unanimous (UNI)</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>シールドなしツイストペアケーブル (以下 T568B ケーブル)</td>
</tr>
<tr>
<td>コネクタ</td>
<td>RJ-45</td>
</tr>
</tbody>
</table>

(2) 配線形式

●配線の T568B ケーブル (カテゴリー 5) を適用します。ケーブルの最大長は 300m です。

(3) コネクタ

本インタフェースに適用する ケーブルは RJ-45 コネクタまたは T568B ケーブル規格カテゴリー 5 以上に相当する RJ-45 ケーブルです。

(4) コネクタ

■■■■のために規定された RJ-45 準拠の RJ-45 コネクタ (一般に 8P8C と呼ばれる) を使用して接続します。

■■■■モジュラコネクタ形状を図 1.1.2 に、ピン配置を表 1.1.2 に示します。
図 1.1.3. 項マジュラミ斉形状

表 1.1.3. ピ配置

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>信号の方向</th>
<th>ピ番号</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>送信</td>
<td>Tx(+)</td>
<td>→</td>
<td></td>
<td>ピの送信信号</td>
</tr>
<tr>
<td></td>
<td>Tx(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受信</td>
<td>Rx(+)</td>
<td>←</td>
<td></td>
<td>ピの受信信号</td>
</tr>
<tr>
<td></td>
<td>Rx(-)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

特にサービスノードとの接続にはストレートまたはクロスのケーブルを使用します。いずれのケーブルを使用するかは接続する機器のコネクタの仕様によります。内部でストレート接続をしている "端末等" はストレートケーブルを使用し、内部でクロス接続をしている "ハブ等" との接続にはクロスケーブルを使用します。なお、ハブにはストレート・クロスの切替スイッチを装備している場合もあります。接続ケーブルの形態を図 1.1.4. に示します。
1.2. 電気的条件

(□) 出力特性
　端子の出力電圧などの電気的条件は、表1-2-1に示す出力パルス電圧、負荷抵抗に対する値となります。

(□) ケーブル特性
　ケーブルの電気的条件は以下の特性で示されます。
　- 插入損失
　　100MHz〜1MHzの周波数帯域中における挿入損失は5dB未満である必要があります。挿入損失がケーブル以外に、コネクタによるもの、ならびにインピーダンスの不整合によるものも含まれます。
　- 駆動伝送特性-インピーダンス
　　100MHz〜1MHzの周波数帯域中における特性インピーダンス(50Ω)は10Ωの範囲でなければならない。
　- タイミング・ジッタ
　　複数のツイストペアケーブルをパッチパネルやERなどで中継接続してゆくと、伝送系のインピーダンス不整態が発生し、その結果パルス信号の時間ずれ（タミング・ジッタ）が発生します。定義された試験波形信号に対して5.0nsのジッタでなければならない。
　- 伝送遅延
　　10ビット長(1ビット=488ns相当)以下の遅延でなければなりません。

1.3. 論理的条件

(□) アクセス制御
　IEEE802.3の規格に準拠する9ビット長のCSMA/CD(10Base5、10Base2、10Base4)方式と呼ばれるアクセス制御を行います。各端末がメッセージを送信しようとするとときにまずキャリアセンスによって伝送媒体が空いているかどうかを検知し、衝突を検知した場合は一定時間待機、無信号状態になった時にメッセージを送信します。

(□) フレーム構成
　図1-3-1に示すIEEE802.3標準、IEEE802.5標準のフレームフォーマット及びIEEE802.4標準のフレームフォーマットがあります。本サービスではIEEE802.3標準のフレームフォーマット及びIEEE802.4標準のフレームフォーマットをサポートします。
(1) 伝送符号
信号を送受信するための符号化方式にはマンチェスタ符号化方式を使用します。マンチェスタ符号化方式は送信データが0の時ビットの中央で高レベルから低レベルへ、1の時ビットの中央で低レベルから高レベルへ反転させる符号化方式です。
インタフェース

インタフェースは物理的、電気的及び論理的条件から構成されます。
インタフェース条件はIEEE802.3u 100BASE-TX とIEEE802.3u 100Mbit/sの伝送速度でベースバンド信号の転送を行います。
本インタフェースにおける規定点を図に示します。

(I) 物理的条件
ツイストペアケーブルの仕様及びツイストペアケーブルを接続するためのコネクタの規格

(I) 電気的条件
ツイストペアケーブルとサービスノードを接続するための電気信号レベルの規格等

(I) 論理的条件
ツイストペアケーブルとサービスノードの間で信号を送受信するための伝送フレーム構成の構成等

図 1.2.1ユーザ-端インタフェース規定点

物理的条件

(I) 主要諸元
表 III.3に主要諸元を示します。

表 III.3 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>100BASE-TX（カテゴリ以上のケーブル）を適用します。ケーブルの最大長は100mです。</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>100BASE-TX（カテゴリ以上のケーブル）を適用します。ケーブルの最大長は100mです。</td>
</tr>
<tr>
<td>コネクタ</td>
<td>100BASE-TX（カテゴリ以上のケーブル）を適用します。ケーブルの最大長は100mです。</td>
</tr>
</tbody>
</table>

(I) データケーブル

本インタフェースに適用するケーブルは100BASE-TX（カテゴリ以上のケーブル）を適用します。ケーブルの最大長は100mです。ケーブルの最大長は100mです。

(I) コネクタ

100BASE-TX（カテゴリ以上のケーブル）を適用します。ケーブルの最大長は100mです。ケーブルの最大長は100mです。
図 1.2.2 シャルコブラウン形状

表 1.2.2 ビン配置

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>信号の方向</th>
<th>ビン番号</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>送信</td>
<td>送</td>
<td>→</td>
<td>□</td>
<td>□の送信信号</td>
</tr>
<tr>
<td>受信</td>
<td>受</td>
<td>←</td>
<td>□</td>
<td>□の受信信号</td>
</tr>
</tbody>
</table>

□□とのサービスノードとの接続にはストレートまたはクロスのケーブルを使用します。いずれのケーブルを使用するかは接続する機器のコネクタの仕様によります。内部でストレート接続をしている □□(端末等)はストレートケーブルを使用し、内部でクロス接続をしている □□(ハブ等)との接続にはクロスケーブルを使用します。なお、ハブにはストレート・クロスの切替スイッチを装備している場合もあります。接続ケーブルの形態を図 1.2.3 に示します。

図 1.2.3 ケーブル接続形態
電気的条件

(1) 出力特性
端子の出力電圧などの電気的条件は、場合によってはパルス電圧 値 以下の負荷抵抗に対する値となります。

(2) ケーブル特性
ケーブルの電気的条件は以下の特性で示されます。

[挿入損失]
100BASE-TX の周波数特性において挿入損失は未満でなければなりません。挿入損失はケーブル外に、コンタクトによるもの、ならびにインピーダンスの不適合によるものも含まれます。

[駆動伝送特性・インピーダンス]
100BASE-TX にわたって特性・インピーダンス (Ω) はの範囲でなければならない。

[タイミング・ジャック]
複数のネットワークパルスをパルスパルスやなどの中継接続してゆくと、伝送系のインピーダンス不整が発生し、その結果パルス信号の時間ずれ（タイミング・ジャック）が発生します。定義された試験波形信号に対しては未満のジャックでなければなりません。

[伝送遅延]
伝送遅延 (1.2.3.相当) 以下の速度でなければなりません。

論理的条件

(1) アクセス制御
パルス信号を同様にパルス信号に拡張する方式を用いてアクセス制御を行います。

(2) インタフェース構成
フレーム構成は、インタフェース構成を参照してください。

(3) 伝送符号
パルス信号は、送信データを数段階の符号化を経て送信します。
まず送信するデータに対して、ルーチン (0 ビットのデータを 0 ビットのデータに変換する符号化方式) と呼ばれるデータ符号化を行います。この方式により、パルス (0 ビット) 及びパルス (1 ビット) のビットを 1 ビットの符号に変換する方式です。

リオグット符号化されたデータは、伝送媒体の種類に応じてさらに符号符号化されます。送信信号の周波数成分を考慮して電磁波の不要な輻射のレベルを低減するため送信データのスクリーニング (データ列の組み替え) を行います。その後、信号レベル (低い) 信号レベル (高い) のうちの 1 つを用いて符号化する方式を用いる方式によって符号化を行います。符号は信号レベル (低)，(中)，符号の (中) の信号符号であり、ビット値が発生する信号レベルがからへ，からへ，またはからへへ，からへへと遷移します。
图 MLT-3 ENCODER 输出示例
インターフェース

インターフェースは物理的、光学的及び論理的な条件から構成されます。
インターフェース条件は IEEE802.3u 100BASE-FX に基づき、伝送速度でベースバンド信号の転送を行います。
本インターフェースにおける規定点を図 1.3.1に示します。

(i) 物理的条件
光ファイバの仕様及び光ファイバを接続するためのコネクタの規格

(ii) 光学的条件
光ファイバサービスノードを接続するための光信号レベルの規格等

(iii) 論理的条件
光ファイバとサービスノードの間で信号を送受信するための伝送フレーム構成の構成等

規定点

図 1.3.1ユーザ・綱インターフェース規定点

(1) 主要諸元
表 1.3.1に主要諸元を示します。

表 1.3.1主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>2芯（上方向 2芯）</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>□□形単心光ファイバコネクタ</td>
</tr>
</tbody>
</table>

(1) 配線形態
伝送媒体には、□□のマルチモード光ファイバケーブルを適用します。ケーブルの最大長は □□ 重です。

(1) 光ファイバケーブル
本インターフェースに適用される光ファイバケーブルは □□の規格のコアクラッド径が □□□□□□□□のマルチモード光ファイバケーブルを使用します。
サービス提供を行い得る状況により、マルチモード光ファイバケーブルのコアクラッド径を指定させていただくことがあります。

(ii) コネクタ
光送受信用コネクタとして、□□形単心光ファイバコネクタ（□□□□□□□）個（□□□□□□□及び □□□□□□□）で接続します。
サービス提供を行い得る状況により、コネクタ形状を指定させていただくことがあります。
光学的条件

100BASE-FX の光出力は、(平均値) 以下にしなければなりません。

論理的条件

(1) アクセス制御

同様に NRZI と同様に 100BASE-FX に準拠する NRZI 方式を用いてアクセス制御を行います。

インターフェース 10BASE-T 項を参照してください。

(2) フレーム構成

フレーム構成は、10BASE-T 項を参照してください。

传送符号

では送信データを数段階の符号化を経て伝送します。まず送信するデータに対して NRZI (1 ビットのデータを 0 ビットのデータに変換する符号化方式) と呼ばれるデータ符号化を行います。この 1 ビット方式は 0 ビット (0 ビット) の半分である 1 ビットのデータを 1 つの塊 (フレーム) として扱い、各フレームを 1 ビットの符号に変換する方式です。

符号化されたデータは伝送媒体の種類に応じてさらに信号符号化されます。送信信号の周波数成分を均一にして電磁波の不要な輻射のレベルを低くするため送信データのスクランブル (データ列の組み替え) を行い、その後 1 ビットのデータを NRZI と呼ばれる方式によって信号を符号化します。NRZI は信号レベル 0 (低)、1 (高) の符号であり、ビット値 0 が発生する毎に信号レベルが 0 から 1 へ、1 から 0 へと遷移します。

図 1.3.2. NRZI エンコーダ例
インターフェース

インターフェースは物理的、光学的及び論理的条件から構成されます。インターフェース条件はIEEE802.3zに準拠し、1Gbit/sの伝送速度でベースバンド信号の転送を行います。本インターフェースにおける規定点を図に示します。

(1) 物理的条件
光ファイバの仕様及び光ファイバを接続するためのコネクタの規格
(2) 光学的条件
光ファイバサービスノードを接続するための光信号レベルの規格
(3) 論理的条件
光ファイバとサービスノードの間で信号を送受信するための伝送フレーム構成の構成等

図 ユーザ-網インターフェース規定点

物理的条件

(1) 主要諸元
表に主要諸元を示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>2芯（上リ・下リ方向 2芯）</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>2芯形 単心光ファイバコネクタ</td>
</tr>
</tbody>
</table>

(1) 配線形態
伝送媒体には、2芯のマルチモード光ファイバケーブルを適用します。ケーブルの最大長は全二重です。

(2) 光ファイバケーブル
本インターネットに適用される光ファイバケーブルは、IEEE802.3規格のコアクラッド径が50μm、62.5μmのマルチモード光ファイバケーブルを使用します。
モード帯域(短波 長波)最大距離は表に示します。
サービス提供を行う状況により、マルチモード光ファイバケーブルのコアクラッド径を指定していただくことがあります。
表 1.4.2 ファイバタイプによる最大距離

<table>
<thead>
<tr>
<th>ファイバタイプ</th>
<th>モード帯域最大 (光波長: 62.5μm MMF)</th>
<th>最大距離 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25Gbps 100ppm</td>
<td>1.0Gbps</td>
<td>500/MmF</td>
</tr>
<tr>
<td>1.49Gbps 100ppm</td>
<td>1.0Gbps</td>
<td>500/MmF</td>
</tr>
</tbody>
</table>

(1) ケーブル
光送受信用ケーブルとして、円形単心光ファイバケーブル（芯部径：8.2μm）が個（芯部径：8.2μm）及び個（芯部径：8.2μm）で接続します。

サービス提供を行う前の状況によりケーブル形状を指定させていただくことがあります。

光学的条件

マルチモード光ファイバを使用して、比較的廉価な短波長レーザー光トランシーバ（波長：850nm）を使用しています。

送信、受信光特性を表1.4.3に示します。

表 1.4.3 送信側各特性値
表 1.2.4 受信機特性値

<table>
<thead>
<tr>
<th>性能項目</th>
<th>サブサプログラム</th>
<th>安定性</th>
<th>要求値</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイレントスジック (所要)</td>
<td>12.5PPM</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>ワイドスリット (スパン)</td>
<td>770〜860nm</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>平均受信電力 (最大)</td>
<td>0dBm</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>受信感度</td>
<td>-17dBm</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>返信損失 (最小)</td>
<td>12dB</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>ストレッジ受信感度</td>
<td>-12.5dBm</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>水平目印閉鎖ペナルティ</td>
<td>2.6dB</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
<tr>
<td>受信電気的3dB上限限周波数 (最大)</td>
<td>1500MHz</td>
<td>要求値</td>
<td>0.0PPM</td>
</tr>
</tbody>
</table>

論理的条件

(1) アクセス制御
全二重通信を行うため基本的にアクセスマネージを行う。接続にギガピットのアクセスマネージにおける相手の端末の方式が行われる。衝突を前提にした半二重通信を互換性を保つため、半二重通信を行うためのキャリブレーションと半二重動作時にデータ伝送の効率を上げるためのフレームパーストと呼ばれる拡張が含まれています。

(2) フレーム構成
フレーム構成は、IEEE802.3インタフェースに関する項を参照してください。

(3) 伝送符号
送信データは、IEEE802.3のビットのデータをIEEE802.3のビットに変換する符号化方式と呼ばれるフレームのデータをIEEE802.3のビットに変換する符号化方式と呼ばれるプロセスを行います。この方式では、帯域の利用を有效にし、各ラベルをパラメータで符号化する方式です。
8B/10B符号化の目的は、IEEE802.3のデータの符号化と同様、制御符号の確保とクロック再生のための転送密度の確保です。その他にステーリング・ディスパルティと呼ばれるエラ検出機械があります。
8B/10B符号化されたデータは、IEEE802.3のハードウェアレンダーレを通してIEEE802.3に変換され、そこからパラレル/シリアル変換され後、IEEE802.3のシリアル信号として伝送されます。
インタフェース

インタフェースは物理的、光学的及び論理的条件から構成されます。
インタフェース条件はIEEE802.3z 1000BASE-LX基準とし、1.5Gbit/sの伝送速度でベースバンド信号の転送を行います。
本インタフェースにおける規定点を図18に示します。

(1) 物理的条件
光ファイバの仕様及び光ファイバを接続するためのコネクタの規格
(2) 光学的条件
光ファイバとサービスノードを接続するための光信号レベルの規格等
(3) 論理的条件
光ファイバとサービスノードの間で信号を送受信するための伝送フレーム構成の構成等

図18ユーザ-網インタフェース規定点

物理的条件

(1) 主要諸元
表19に主要諸元を示します。

表19主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>같다 (上り下り方向 🍟芯)</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>.hashCode 頭心光ファイバコネクタ</td>
</tr>
</tbody>
</table>

(2) 配線形態
伝送媒体には、等のマルチモードファイバケーブルまたはシングルモード光ファイバケーブルを適用します。ケーブルの最大長は、0.5kmシングルモード光ファイバ使用の場合です。

(3) 光ファイバケーブル
本インタフェースに適用される光ファイバケーブルは、1000BASE-LX規格のコアクラッド径がقدرة 0.125nidad0、ミーア径が0.125nidad0のマルチモード光ファイバケーブル及びコーパクラッド径が0.125nidad0のシングルモード光ファイバケーブルを使用します。
モード帯域 (短波 長波 0.125nidad0)、最大距離は表19に示します。
サービス中心の光ファイバケーブルの種別を指定させていただくことがあれば、
表 1.5.2 ファイバタイプによる最大距離

<table>
<thead>
<tr>
<th>ファイバタイプ</th>
<th>モード帯域</th>
<th>最大距離 [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/125 50/148</td>
<td>62.5</td>
<td>550</td>
</tr>
<tr>
<td>62.5/500 550</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>400/400 550</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>500/500 550</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

(1) コネクタ
光送受信用コネクタとして、10Gbps用単心光ファイバコネクタ（10G-LX・10G-LH）を個別（10G-LX・10G-LH）で接続します。
サービス提供を考慮の状況により、コネクタ形状を指定させていただくことがあります。

1.5.3 光学的条件
長波長レーザー光トランシーバを使用して、マルチモード光ファイバとシングルモード光ファイバの両方をサポートします。
送信、受信光特性を表 1.5.3 に示します。

表 1.5.3 送信側特性値

<table>
<thead>
<tr>
<th>特性</th>
<th>値</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>波長</td>
<td>1270 to 1355 nm</td>
<td></td>
</tr>
<tr>
<td>起電</td>
<td>0.26 ns</td>
<td></td>
</tr>
<tr>
<td>RMSスペクトル幅</td>
<td>4 nm</td>
<td></td>
</tr>
<tr>
<td>平均発光強度（最大）</td>
<td>-3 dBm</td>
<td></td>
</tr>
<tr>
<td>平均発光強度（最小）</td>
<td>-11.0 dBm</td>
<td></td>
</tr>
<tr>
<td>平均発光強度（OFF）</td>
<td>-30 dBm</td>
<td></td>
</tr>
<tr>
<td>灭止比</td>
<td>9 dB</td>
<td></td>
</tr>
<tr>
<td>RIN</td>
<td>-120 dB/Hz</td>
<td></td>
</tr>
<tr>
<td>CPR</td>
<td>N/A</td>
<td>dB</td>
</tr>
<tr>
<td>評価項目</td>
<td>値</td>
<td>単位</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Signaling speed (range)</td>
<td>1.25–100ppm</td>
<td>GBd</td>
</tr>
<tr>
<td>Wavelength (range)</td>
<td>1270 to 1355 nm</td>
<td></td>
</tr>
<tr>
<td>Average receive power (max)</td>
<td>-3 dBm</td>
<td></td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>-19 dBm</td>
<td></td>
</tr>
<tr>
<td>Return loss (min)</td>
<td>12 dB</td>
<td></td>
</tr>
<tr>
<td>Stressed receive sensitivity</td>
<td>-14.4 dBm</td>
<td></td>
</tr>
<tr>
<td>Vertical eye-closure penalty</td>
<td>2.60 DB</td>
<td></td>
</tr>
<tr>
<td>Receive electrical 3dB upper cutoff frequency (max)</td>
<td>1500 MHz</td>
<td></td>
</tr>
</tbody>
</table>

論理的条件

(1) アクセス制御
アクセス制御は、インターネットインターフェース の項を参照してください。

(2) フレーム構成
フレーム構成は、インターネットインターフェース の項を参照してください。

(3) 伝送符号
伝送符号は、インターネットインターフェース の項を参照してください。
方式のユーザ-網インタフェース仕様

ユーザ-網インタフェース

ユーザ-網インタフェースは、物理的、電気的及び論理的条件から構成されます。本インタフェースにおける規定点を図に示します。

物理条件
同軸ケーブルの仕様及び同軸ケーブルをNT1を接続するためのコネクタ等の規格

電気的条件
規格ケーブルをNT1を接続するための信号レベル等の規格

論理的条件
同軸ケーブルで信号を送受信するための伝送フレーム構成等

図 ユーザ-網インタフェース規定点

物理的条件

主要諸元
主要諸元を表に示します。

表 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>上り下り方向1本</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>同軸ケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>BNCコネクタ</td>
</tr>
<tr>
<td>伝送速度</td>
<td>44.736M</td>
</tr>
<tr>
<td>クロック精度（注）</td>
<td>□20口</td>
</tr>
<tr>
<td>伝送符号</td>
<td>B3ZS符号</td>
</tr>
<tr>
<td>入出力特性</td>
<td>表参照</td>
</tr>
</tbody>
</table>

(注)フレーム同期方式による

配線形態
DS3インタフェースの伝送媒体には2本の同軸ケーブルを適用します。
同軸ケーブル
ユーザ终端インタフェースに適用される同軸ケーブルは、75Ω同軸ケーブルです。

コネクタ
送信信号、受信信号それぞれに対して、BNC同軸コネクタ（JIS C 5412 - 1976高周波同軸C0 2コネクタ準拠）で接続します。

電気的条件
主要諸元
DS3インタフェースの電気的条件の主要諸元を表2.2に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>伝送符号</td>
<td>B3ZS符号</td>
</tr>
<tr>
<td>立上がり遅延</td>
<td>4μs以下</td>
</tr>
<tr>
<td>負荷インピーダンス</td>
<td>純抵抗 75Ω ± 5%</td>
</tr>
<tr>
<td>バリスマスク</td>
<td>図3参照</td>
</tr>
<tr>
<td>出力端規定</td>
<td>3KHｚ帯域で測定した場合に以下の周波数特性を満足する。</td>
</tr>
<tr>
<td>出力レベル</td>
<td>22.368MHz: -1.8dBm + 5.7dBm</td>
</tr>
<tr>
<td></td>
<td>44.736MHz: 22.368MHzより20dB以下</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (in Unit Intervals)</th>
<th>Normalized amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>-0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

図2.2 マスクパターン規定 (図3参照 図3参照)
論理的条件

フレーム構成
○ビットフレーム構成のみ提供します。

インターフェース

インターフェースは物理的、光学的及び論理的条件から構成されます。物理的条件における規定点を図に示します。

(Ⅰ) 物理的条件
光ファイバの仕様及び光ファイバを接続するためのコネクタ等の規格

(Ⅱ) 光学的条件
光ファイバとサービスノードを接続するための光信号レベルの規格等

(Ⅲ) 論理的条件
光ファイバとサービスノードの間で信号を送受信するための伝送フレーム構成等

図 ユーザ 網インターフェース規定点

物理的条件

(Ⅰ) 主要諸元
表に主要諸元を示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>□芯 (上り下り方向 □芯)</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>□□□□形単心光ファイバコネクタ□□□□ □□□□</td>
</tr>
</tbody>
</table>
(1) コネクタ
光送受信用コネクタとして、図3形単心光ファイバコネクタ（テールスタンド）1個（テーブルスター及びテーブルフット）で接続します。

光学的条件

(1) 主要諸元
光学的条件は、図2標準で図3の光学的条件に準拠します。その主要諸元を表1に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td>500M</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブルド値/ドミノ符号（注）</td>
</tr>
<tr>
<td>発光中心波長</td>
<td></td>
</tr>
</tbody>
</table>
| 発光条件 | 正論理：論理値0は発光
 | 論理値1は非発光 |
| 平均送信電力 | |
| 送信波形 | マスクパターン規制（図2図3参照） |
| 消光比 | |
| 最大受信電力（平均値）| |
| 最小受信電力（平均値）| |
| 常用レベル | |

(注)スクランブルド値/ドミノ符号
図2（図3）の場合には図2に示すように論理値000の場合はドミノ論理値000の場合にはドミノとする符号形式をしています。

<table>
<thead>
<tr>
<th>論理値</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>波形</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(注)論理設定は正論理です。すなわちドミノ符号000時光000、ドミノ符号001時光001とします。
(注)図2図3相対電流値を図6（図）

図2図3ドミノ符号の説明
(1) 光出力条件
サービスノードから WWII に送出する光信号の条件を表 1 に示します。なお、スクリーンプラによって変調されたマーク率 II II の信号での特性です。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均送信電力</td>
<td>(0.50, 0.80)</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定 (図 II II 参照)</td>
</tr>
<tr>
<td>消光比</td>
<td>0.75 以上 (図 II II 参照)</td>
</tr>
</tbody>
</table>

測定条件： II II が伝送ビットレート II II の II 次トムソノフィルタ
試験パターン： スクリーンプリッド II 値

* 光 II は必要に応じて用います。
* * カットオフ周波数 II は減衰点が入力公称ビットレートの II 倍
(1) 光入力条件
サービスノードから受信する光信号の条件を表に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大受信電力（平均値）</td>
<td></td>
</tr>
<tr>
<td>最小受信電力（平均値）</td>
<td></td>
</tr>
</tbody>
</table>

(2) パワーベナルティ
受信器におけるパワーベナルティは 以下です。
パワーベナルティは、送信スペクトラムの拡がり及びファイバ波長分散に起因する受信劣化等、特性が劣化し、それによって受信電力の低下を招くことにします。（標準参照）

(3) フレーム構成
フレーム構成は、勧告に準拠します。
インターフェースにより提供される回線は図のの対称、双方向回線での構造を持ち、フレーム構造を図に示します。
(1) オーバーヘッド

- オーバーヘッドの種類
 - セクションオーバーヘッド（SOH）
 - パスオーバーヘッド（POH）

- オーバーヘッドの詳細
 - オーバーヘッドの Maps のプロセスの bit パイドの配置図を図 2.2.6 に示します。

<table>
<thead>
<tr>
<th>bit</th>
<th>bit</th>
<th>bit</th>
<th>bit</th>
<th>パイド</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

図 2.2.6 オーバーヘッド配置

- オーバーヘッド
 - オーバーヘッドのパイド定義は、表 2.2.6 に示します。
 - オーバーヘッドの Maps ポイント定義を表 2.2.6 に示します。
- ポイント
 - ポイント値及びポイント動作は、表 2.2.6 に示します。
- オーバーヘッド
 - パス終端しないため、規定しません。

<table>
<thead>
<tr>
<th>パイド</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>フレーム同期</td>
<td>0010110</td>
</tr>
<tr>
<td>0</td>
<td>フレーム同期</td>
<td>0010101</td>
</tr>
<tr>
<td>0</td>
<td>パスオーバーヘッド (POH)</td>
<td>0010100</td>
</tr>
<tr>
<td>0</td>
<td>符号誤り監視</td>
<td>0010100</td>
</tr>
<tr>
<td>0</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>ポイント</td>
<td>規定値</td>
</tr>
<tr>
<td>1</td>
<td>ポイント動作</td>
<td>負荷用パイド</td>
</tr>
<tr>
<td>1</td>
<td>セクション誤り監視</td>
<td>0010</td>
</tr>
<tr>
<td>1</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>セクション (O)</td>
<td>0010</td>
</tr>
<tr>
<td>1</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

表 2.2.6 オーバーヘッドの パイド定義
同期

(1) フレーム同期
フレーム同期方式を表に示します。

<table>
<thead>
<tr>
<th>フレーム同期パター</th>
<th>パターン探索法・パターン照合法</th>
<th>フレーム同期保護 (注）</th>
</tr>
</thead>
<tbody>
<tr>
<td>バイトパターン</td>
<td>バイト即時シフト方式 (注)</td>
<td>リセット方式</td>
</tr>
<tr>
<td>バイトパターン</td>
<td>バイトの バイト同時照合方式</td>
<td>前方 段</td>
</tr>
<tr>
<td></td>
<td></td>
<td>後方 段</td>
</tr>
</tbody>
</table>

(注) 前方 段とは、フレーム同期状態においてフレーム同期パター照合結果、回連続不一致を検出したときに、ハーマン状態に移ることを指します。
(注) 後方 段とは、ハーマン状態においてフレーム同期パター照合結果、回連続一致を検出したときに、同期状態に移ることを指します。
(注) バイト即時シフト方式と同等な同期復帰特性を有するフレーム同期方式でもかまいません。

(2) 網同期
同期タイミングを繊のクロックから抽出する従属同期方式で、口を動作させる必要があります。すなわち、口は繊からの信号よりピット及びフレーム同期のタイミングを自己抽出し、それに従って送信信号を送出する必要があります。

スクランブラー
スクランブラー シーケンス長 パターのフレーム同期スクランブラーで、原始多項式は、+ です。
図にフレーム同期型スクランブラーの構成例を示します。
スクランブラーは、インターフェースの最初の行、最後のピットに続くピットの第 ピット目でシーケンスに初期化します。
このビットとスクランブラーされる全てのビットがスクランブラーの 出力として他の論理和を取り出力します。スクランブラーは フレームに対して動作しますが、スクランブラーの最初の行はスクランブラーしません。

図 フレーム同期スクランブラー
インタフェース

インタフェースは物理的、光学的及び論理的条件から構成されます。

(1) 物理的条件
光ファイバの仕様及び光ファイバを接続するためのコネクタ等の規格

(2) 光学的条件
光ファイバを接続するための光信号レベルの規格等

(3) 論理的条件
光ファイバとサービスノードの間で信号を送受信するための伝送フレーム構成等

図 2.3.1 ユーザ・ネットワークインターフェース規定点

物理的条件

(1) 主要諸元
表 2.3.1 に主要諸元を示します。

表 2.3.1 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>2芯（上り下り各方向2芯）</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>2芯形状单心光ファイバコネクタ(10/125)</td>
</tr>
</tbody>
</table>

(1) 配線形態
伝送媒体には、本のシングルモード光ファイバケーブルを適用します。

(2) 光ファイバケーブル
本インターフェースに適用される光ファイバケーブルは、注）に相当するシングルモード光ファイバケーブルを使用します。
（注）他の規格または規格に相当するものを使用できます。または規格に相当するものを使用できます。

(3) コネクタ
光送受信用コネクタとして、2芯形状单心光ファイバコネクタ(10/125)個及び(10/125)に接続します。
表 2.3.2 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td>1000BASE-T 802.3az</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブルド 0種 1000BASE-T符号（注）</td>
</tr>
<tr>
<td>発光中心波長</td>
<td>650nm ±10nm</td>
</tr>
<tr>
<td>発光条件</td>
<td>正論値：論理値 0は発光
論理値 1は非発光</td>
</tr>
<tr>
<td>平均送信電力</td>
<td>15.520~18.200mW</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定（図 2.3.3 参照）</td>
</tr>
<tr>
<td>消光比</td>
<td>0以上（図 2.3.4 参照）</td>
</tr>
<tr>
<td>最大受信電力（平均値）</td>
<td>23dBm 以上 (図 2.3.5 参照)</td>
</tr>
<tr>
<td>最小受信電力（平均値）</td>
<td>0dBm 以上</td>
</tr>
<tr>
<td>パワーベナルティ</td>
<td>0dBm 以下</td>
</tr>
</tbody>
</table>

（注）スクランブルド 0種 1000BASE-T符号
スクランブルド 0種 1000BASE-T符号は図 2.3.4 に示すように論理値 0の場合は論理値 0の場合に該当し、論理値 1の場合には論理値 1とする符号形式をもとします。

図 2.3.3 1000BASE-T符号の説明
(1) 光出力条件
サービスノードから□□に送出する光信号の条件を表□□□□に示します。
なお、スクランブルによって変調されたマーク率□□□□の信号での特性です。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均送信電力</td>
<td>□□□□～□□□□</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定（図□□□□参照）</td>
</tr>
<tr>
<td>消光比</td>
<td>□□□□以上（図□□□□参照）</td>
</tr>
</tbody>
</table>

測定条件： □□□□が伝送ビットレート□□□□の□□□□次トムソンフィルタ
試験パターン： スクランブル□□値

* □□□□は必要に応じて用います。
* * カットオフ周波数（□□□□減衰点）が入力公称ビットレートの□□□倍

図□□□□マスクパターン規定（□□□□標準□□□□□□）
(1) 光入力条件
サービスノードが 増から受信する光信号の条件を表 に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大受信電力 (平均値)</td>
<td></td>
</tr>
<tr>
<td>最小受信電力 (平均値)</td>
<td></td>
</tr>
</tbody>
</table>

(2) パワーベナルティ
受信器におけるパワーベナルティは 以下です。
パワーベナルティ送信スペクトラムの拡がり及びファデ長分散に起因する受信劣化等、特性が
劣化し、それによって受信電力の低下を招くことをいいます。（標準 パワーベナルティ参照）

(3) フレーム構成
フレーム構成は、導入を考慮 に準拠します。
インタフェース中 インタフェースの構造により提供する回線は図 に示される
対称、双方向回線で の構造を持ち、のフレームとの関係
を保存します。
フレーム構成を図 に示します。
(1) オーバーヘッド

- オーバーヘッドの種類
 - 52-53のセクションオーバーヘッド (OHE)
 - 54-55のパスオーバーヘッド (OHPC)

- オーバーヘッドの詳細
 ボイントの配置図を図 3.3.18 に示します。

<table>
<thead>
<tr>
<th>パイト</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- ポイント
 ポイント値及びポインタ動作は、図 3.3.18 に示します。

- 未定義 サービスノード 5 未定義

図 3.3.18 サービスノード 5 のオーバーヘッド配置

- 52-53 オーバーヘッド
 ボイントのポインタ定義は、図 3.3.18 に示します。
 ボイントのポインタ定義を図 3.3.18 に示します。

- 未定義 サービスノード 5 未定義

【ポイント変更規定について】
- 以前と異なり状態 (0-99999) かつ ポイント値が変更され、または ポイント値が変更されない場合、以下の要件が成立します。
- ボイント値が変更されない場合、または ボイント値が増加しない場合、または ボイント値が減少しない場合、以下の要件が成立します。
- 新しいボイント値が 号連続し一致して、かつ通常値を超えた場合は、ボイント値は変更されません。

【ポイント生成について】
- 未定義 サービスノード 5 未定義

42
表 2.3.6 VC-4 の ポリ→POH バイト定義

<table>
<thead>
<tr>
<th>バイト</th>
<th>機能</th>
<th>規定值</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF</td>
<td>フレーム同期</td>
<td>FF000000</td>
</tr>
<tr>
<td>FF</td>
<td>フレーム同期</td>
<td>FF000000</td>
</tr>
<tr>
<td>00</td>
<td>未使用</td>
<td>FF000000 *</td>
</tr>
<tr>
<td>01</td>
<td>符号誤り監視</td>
<td>FF000000</td>
</tr>
<tr>
<td>02</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>03</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>04</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>05</td>
<td>ポインタ</td>
<td>規定値 FF000000-FF000000</td>
</tr>
<tr>
<td>06</td>
<td>正負スタンプ指示</td>
<td>FF000000-FF000000</td>
</tr>
<tr>
<td>07</td>
<td>ハスバ (スベリ)</td>
<td>FF000000-FF000000</td>
</tr>
<tr>
<td>08</td>
<td>ポインタ検出</td>
<td>負スタンプ検出</td>
</tr>
<tr>
<td>09</td>
<td>セクション誤り監視</td>
<td>FF000000</td>
</tr>
<tr>
<td>0A</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0B</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0C-0D</td>
<td>セクション×(000000000000)検出</td>
<td>FF000000-FF000000</td>
</tr>
<tr>
<td>0E-0F</td>
<td>セクション×(000000000000)検出</td>
<td>FF000000-FF000000</td>
</tr>
<tr>
<td>0A</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0B</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0C-0D</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>0E-0F</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

この行の ビット×ildedの ビット サービスノード方向は 未定義としています。
* この サービスノード: サービスノード 00 と規定せずに、サービスノード 00 と規定せずに。

表 2.3.6 POH の ポリ→POH バイト定義

<table>
<thead>
<tr>
<th>バイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>01</td>
<td>パス誤り監視</td>
<td>FF000000</td>
</tr>
<tr>
<td>02</td>
<td>シグナルラベル</td>
<td>サービスノード: サービスノード</td>
</tr>
<tr>
<td>03</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>0A</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>0B</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>0C</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>0D</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>0E</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
<tr>
<td>0F</td>
<td>サービスノード: サービスノード</td>
<td></td>
</tr>
</tbody>
</table>

* : サービスノード: サービスノード

サービスノード: サービスノード 00 規定せずに。

43
同期

(1) フレーム同期
フレーム同期方式を表で示します。

|フレーム同期パターン|パタン探索法・パターン照合法|フレーム同期保護
|注①・注②|
|------------|---------------|----------------|
|1ピート|1ピト時シフト方式 (注①)|リセット方式 |
|2ピート|2ピト時シフト方式 (注①)|前方②段 |
|3ピート|3ピト時シフト方式 (注①)|後方②段 |

(注①) 前方②段とは、フレーム同期状態においてフレーム同期パターン照合結果、②回連続不一致を検出したとき、ハーネィング状態に移ることを示します。
(注②) 後方②段とは、ハーネィング状態においてフレーム同期パターン照合結果、②回連続一致を検出したとき、同様状態に移ることを示します。
(注③) ピト時シフト方式と同等の同期復帰特性を有するフレーム同期方式でもありません。

(2) 同期
同期タイミングを経のクロックから抽出する従属同期方式で、図を動作させる必要があります。すなわち、図は経からの信号によりパイット及び、フレーム同期のタイミングを自己抽出し、それに従って送信信号を出す必要があります。

スクランプ
スクランプ、シーケンス長②のフレーム同期スクランプで、原始多項式は、1 + D + D² です。
図にフレーム同期型スクランプの構成例を示します。
スクランプは、③の最初の行、最後のパイットに続くパイットの第③ピト目で②②②②②②に初期化します。
このピトとスクランプされる全ての連続するピトは、スクランプの③の出力と他の論理とを取り出します。スクランプは②②②②フレームに対して動作しますが、②②②②の最初の行はスクランプしません。

図②②②②フレーム同期スクランプ
インターフェース

インタフェースは物理的、光学的及び論理的条件から構成されます。

(1) 物理的条件

光ファイバーの仕様及び光ファイバーを接続するためのコネクタ等の規格

(2) 光学的条件

光ファイバーを繋ぐための光信号レーザの規格等

(3) 論理的条件

光ファイバーを繋ぐための伝送フレーム構成等

![図](図は画像として表示されます)

ユーザー網インターフェース規定点

物理的条件

(1) 主要諸元

表に主要諸元を示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>2芯（上り下り各方向2芯）</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>防水形単芯光ファイバコネクタ（1個）</td>
</tr>
</tbody>
</table>

(2) 配線形態

伝送媒体には、2芯のシングルモード光ファイバケーブルを適用します。

(3) 光ファイバケーブル

本インターフェースに適用される光ファイバケーブルは、JIS C 5973（別）に規定するシングルモード光ファイバケーブルを使用します。

(注)この規格は、ユーザーが自由に選択できる規格です。

(4) コネクタ

光送受信用コネクタとして、2芯形単芯光ファイバコネクタ（1個）を接続します。

45
光学的条件

(□) 主要諸元
光学的条件は、図に標準 章名の表に準拠します。その主要諸元を表に示します。

表 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td>622.080 Mbit/s</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブルド [値] 同符号</td>
</tr>
<tr>
<td>発光中心波長</td>
<td>1.30 ± 0.05 m</td>
</tr>
<tr>
<td>発光条件</td>
<td>正論値 = 論理値 0 は発光</td>
</tr>
<tr>
<td></td>
<td>論理値 1 は非発光</td>
</tr>
<tr>
<td>平均送信電力</td>
<td>23dB 以上</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定 (図参照)</td>
</tr>
<tr>
<td>消光比</td>
<td>40dB 以上</td>
</tr>
<tr>
<td>最大受信電力 (平均値)</td>
<td>8.2dB 以上</td>
</tr>
<tr>
<td>最小受信電力 (平均値)</td>
<td>-15dB 以上</td>
</tr>
<tr>
<td>パワーベナルティ</td>
<td>以下</td>
</tr>
</tbody>
</table>

(□) 光出力条件
サービスドードから △に送出する光信号の条件を表に示します。
なお、スクランブルによって変調されたマーク率 △の信号の特性です。

表 光出力規格

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均送信電力</td>
<td>23dB 以上</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定 (図参照)</td>
</tr>
<tr>
<td>消光比</td>
<td>40dB 以上</td>
</tr>
</tbody>
</table>

測定条件： 図が伝送ビットレート △スコの △次トムソンフィルタ
試験パターン： スクランブル [値]

図 マスクパターン規定 (標準 章名の表に)
(1) 光入力条件
サービスノードが 것으로受信する光信号の条件を表に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大受信電力（平均値）</td>
<td>1080 dBm</td>
</tr>
<tr>
<td>最小受信電力（平均値）</td>
<td>1044 dBm</td>
</tr>
</tbody>
</table>

(2) パワーベナルティ
受信器におけるパワーベナルティは以下です。
詳細はインターフェースリファレンス項を参照してください。

表 光入力条件

(3) 論理的条件

(4) フレーム構成
フレーム構成はガラス管状に従事します。

(5) オーバーヘッド
オーバーヘッドの種類
- セクションオーバーヘッド（SCH）
- パスオーバーヘッド（PSH）
オーバーヘッドの詳細
- のセクションオーバーヘッドのオーバーヘッドの配置図を図に示します。
図 すみのオーバヘッド配置

● すみのオーバヘッド
すみのバイト定義は、すみ勧告 すみに準拠します。
すみのすみバイト定義を表 すみに示します。
● サンプルポイント
ポイント値及びポイント動作は、すみ勧告 すみに準拠します。
なお、ポイント受信規定、ポイント生成において重複した自封が発生した場合、以下のとりとします。

【ポイント受信規定について】
● すみが変更あり状態（すみのすみ）かつ ポイント値の多くが反転、または すみ ポイント値の多くが反転した場合は、すみを有効とし、スタック操作は無視します。
● ポイント値の多くが反転であり かつ ポイント値の多くが反転した場合は、スタック操作を無視します。
● すみが変更あり状態である場合で通常のポイント値（0〜255を超えたときは ポイント値は変更しません。
● 新しいポイント値が 0回連続して一致して、なおかつ通常値を超えた場合は ポイント値は変更しません。

【ポイント生成について】
すみの勧告 すみで規定されているとき ポイント値の増減操作は、すみまたは スタックによるポイント値の増減操作後 すみフレーム内に要求があった場合においても、この操作は無視します。
表 12-12 G.707のポーチャップート定義

<table>
<thead>
<tr>
<th>ビット</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>フレーム同期</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>フレーム同期</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>未使用</td>
<td>*</td>
</tr>
<tr>
<td>11</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>中継セッションの誤り監視</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>01</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>01</td>
<td>ポインタ</td>
<td>規定値</td>
</tr>
<tr>
<td></td>
<td>バスエラ (E1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ポインタ動作</td>
<td>負スタック用ビット</td>
</tr>
<tr>
<td></td>
<td>セッション誤り監視</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>セッションエラ (E1)検出</td>
<td></td>
</tr>
<tr>
<td></td>
<td>セッションエラ (E1)検出</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

表 12-13 STM-4のポーチャップート定義

<table>
<thead>
<tr>
<th>ビット</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>01</td>
<td>バスエラ</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>パスシグナルラベル</td>
<td></td>
</tr>
<tr>
<td></td>
<td>バスエラ</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>バスエラ</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>バスエラ</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

同期

(1) フレーム同期
フレーム同期方式は、[●●●●] インターフェース [●●●●] 項を参照してください。

(2) 網同期
同期タイミングを網のクロックから抽出する従属同期方式で [●●●●] を動作させる必要があります。

スクリーンブラ

スクリーンブラは、[●●●●] インターフェース [●●●●] 項を参照してください。
インタフェース

インタフェースは物理的、光学的及び論理的条件から構成されます。

(1) 物理的条件
光ファイバの仕様及び光ファイバを接続するためのコネクタ等の規格

(2) 光学的条件
光ファイバとサービスノードを接続するための光信号レベルの規格等

(3) 論理的条件
光ファイバとサービスノードの間で信号を送受信するための伝送フレーム構成等

図 ユーザ間インタフェース規定点

物理的条件

(1) 主要諸元
表に主要諸元を示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>純 (上り下り各方向纯)</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>三角形単心光ファイバコネクタ</td>
</tr>
</tbody>
</table>

(2) 配線形態
伝送媒体には、本のシングルモード光ファイバケーブルを適用します。

(3) 光ファイバケーブル
本インタフェースに適用される光ファイバケーブルは、表の通りで、注または調または規格（注）に相当するシングルモード光ファイバケーブルを使用します。

(注) 規格番号 場合、表の規格、または規格（注）に相当します。規格番号は、または規格（注）に相当します。
(1) コネクタ
光送受信用コネクタとして、①形単心光ファイバコネクタ（ITU-T O.1310）個（①形 ファイバ及び ①形 フィルム）を接続します。

光学的条件

(2) 主要諸元
光学的条件は、図に示すとおりに準拠します。その主要諸元を表に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
<th>規格</th>
<th>規格</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td>2488.320Mbit/s</td>
<td>2488.320Mbit/s</td>
<td>2488.320Mbit/s</td>
<td>2488.320Mbit/s</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブル</td>
<td>スクランブル</td>
<td>スクランブル</td>
<td>スクランブル</td>
</tr>
<tr>
<td>発光中心波長</td>
<td>1266nm</td>
<td>1266nm</td>
<td>1360nm</td>
<td>1360nm</td>
</tr>
<tr>
<td>発光条件</td>
<td>正論値</td>
<td>論理値</td>
<td>論理値</td>
<td>論理値</td>
</tr>
<tr>
<td>平均送信電力</td>
<td>-10dBm</td>
<td>-9dBm</td>
<td>-9dBm</td>
<td>-9dBm</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定</td>
<td>マスクパターン規定</td>
<td>マスクパターン規定</td>
<td>マスクパターン規定</td>
</tr>
<tr>
<td>消光比</td>
<td>8.2dB</td>
<td>8.2dB</td>
<td>8.2dB</td>
<td>8.2dB</td>
</tr>
<tr>
<td>最大受信電力</td>
<td>-18dBm</td>
<td>-27dBm</td>
<td>-28dBm</td>
<td>-27dBm</td>
</tr>
<tr>
<td>最小受信電力</td>
<td>1dB</td>
<td>1dB</td>
<td>2dB</td>
<td>1dB</td>
</tr>
<tr>
<td>パワーベナルディ</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

注：サービスノードで使用するインターフェース種別は諸条件により決まります。
注：対応端末設備で使用するインターフェースが①形である場合は、サービスノードと接続する前に、端末設備側にて光送信電力を2488.320Mbit/s以下にする必要があります。
注：対応端末設備で使用するインターフェースが①形である場合は、サービスノードと接続する前に、端末設備側にて光送信電力を2488.320Mbit/s以下にする必要があります。

(3) 光出力条件
サービスノードから①形に出力する光信号の条件を表に示します。
なお、スクランブルによって変調されたマーク率の信号の特性です。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
<th>規格</th>
<th>規格</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>規格</td>
<td>2488.320Mbit/s</td>
<td>2488.320Mbit/s</td>
<td>2488.320Mbit/s</td>
<td>2488.320Mbit/s</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブル</td>
<td>スクランブル</td>
<td>スクランブル</td>
<td>スクランブル</td>
</tr>
<tr>
<td>発光中心波長</td>
<td>1266nm</td>
<td>1266nm</td>
<td>1360nm</td>
<td>1360nm</td>
</tr>
<tr>
<td>発光条件</td>
<td>正論値</td>
<td>論理値</td>
<td>論理値</td>
<td>論理値</td>
</tr>
<tr>
<td>平均送信電力</td>
<td>-10dBm</td>
<td>-9dBm</td>
<td>-9dBm</td>
<td>-9dBm</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定</td>
<td>マスクパターン規定</td>
<td>マスクパターン規定</td>
<td>マスクパターン規定</td>
</tr>
<tr>
<td>消光比</td>
<td>8.2dB</td>
<td>8.2dB</td>
<td>8.2dB</td>
<td>8.2dB</td>
</tr>
<tr>
<td>最大受信電力</td>
<td>-18dBm</td>
<td>-27dBm</td>
<td>-28dBm</td>
<td>-27dBm</td>
</tr>
<tr>
<td>最小受信電力</td>
<td>1dB</td>
<td>1dB</td>
<td>2dB</td>
<td>1dB</td>
</tr>
<tr>
<td>パワーベナルディ</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>
測定条件：圧縮ビットレートが64kの8次トムソンフィルタ
試験パターン：スクランブル値

図マスクパターン規定（標準 原則図示）

（☑）光入力条件
サービスノードが☑から受信する光信号の条件を表に示します。

表光入力条件

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
<th>規格</th>
<th>規格</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>規格</td>
<td>無し</td>
<td>無し</td>
<td>無し</td>
<td>無し</td>
</tr>
<tr>
<td>最大受信電力</td>
<td>無し</td>
<td>無し</td>
<td>無し</td>
<td>無し</td>
</tr>
<tr>
<td>最小受信電力</td>
<td>無し</td>
<td>無し</td>
<td>無し</td>
<td>無し</td>
</tr>
<tr>
<td>パワーベナルティ</td>
<td>無し以下</td>
<td>無し以下</td>
<td>無し以下</td>
<td>無し以下</td>
</tr>
</tbody>
</table>
(2) フレーム構成
フレーム構成は、図の如くして配置するものである。
SDH メッセージは STM-16 のフレーム構成により提供される。図の如くして配置するものを、図の如くして配置するものである。
フレーム構成を図に示す。

(2) オーバヘッド
- オーバヘッドの種類
 - 64 byte のセグメントオーバヘッド
 - セクションオーバヘッド
- オーバヘッドの詳細
 - AU-4 のソース、ポータルの配置図を図に示す。
でも、この操作は無視します。

● ビットオーバーヘッド

このビットのポイント定義は、※の指定及び※の実装に準拠します。

※の実装のビットポイント定義を表に示します。

※のビットオーバーヘッドの場合があります。

<table>
<thead>
<tr>
<th>ビット</th>
<th>ポイント</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>フレーム同期</td>
<td>00111110</td>
</tr>
<tr>
<td>A2</td>
<td>フレーム同期</td>
<td>00101010</td>
</tr>
<tr>
<td>Z0</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>H1</td>
<td>中継セクションの誤り監視</td>
<td>*</td>
</tr>
<tr>
<td>H2</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>S1</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>M1</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>K1</td>
<td>ボイント</td>
<td>負荷用パインド</td>
</tr>
<tr>
<td>K2</td>
<td>ボイント</td>
<td>負荷用パインド</td>
</tr>
<tr>
<td>J0</td>
<td>セクション上位監視</td>
<td>*</td>
</tr>
<tr>
<td>Z0</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>D1</td>
<td>セクションフォーマット検出</td>
<td>*</td>
</tr>
<tr>
<td>D3</td>
<td>セクションフォーマット検出</td>
<td>*</td>
</tr>
<tr>
<td>K7</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>K10</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>K12</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

※のビットポイントのサービスノード方向は、※のサービスノード方向となります。

*：サービスノード※サービスノード

:サービスノード※サービスノード 規定せず。
<table>
<thead>
<tr>
<th>パイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>01</td>
<td>バス誤り監視</td>
<td>1000</td>
</tr>
<tr>
<td>02</td>
<td>バスシングルナルウェル</td>
<td>0000</td>
</tr>
<tr>
<td>02~03</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>04</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>05</td>
<td>未使用</td>
<td>0000</td>
</tr>
<tr>
<td>06</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>07</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>08</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

*: ビークはサービスノードで定義されます。
: サービスノードで規定せず。

(1) プレーン同期
プレーン同期方式は、インタフェースを参照してください。

(2) 網同期
同期タイミングを網のクロックから抽出する従属同期方式で、ビークを動作させる必要があります。

- サービスノードでセクションを終端しない場合は、同期タイミングを網側のビークのクロックから抽出する独立/従属同期方式で、ビークを動作させる必要があります。すなわち、片方のビークはビート及び、フレーム同期のタイミングを生成し、もう片方のビークは網からの信号に従属して送信信号を抽出する必要があります。サービスノードに対する入力信号クロック周波数変動可能範囲は20ppmです。ビークはサービスノードに対し±20ppm以内のクロック周波数精度で信号を入力する必要があります。

グランジラ

- インタフェースを参照してください。
図3.1.1 ユーザ-網インターフェース仕様

インターフェース

(1) 物理的条件

ツイストペアケーブルの仕様及びツイストペアケーブルをユニットに接続するためのコネクタの規格

(2) 電気的条件

ツイストペアケーブルとサービスノードを接続するための信号レベル等の規格

(3) 論理的条件

ツイストペアケーブルとサービスノードの間で信号を送受信するための伝送フレームの構成等

![図3.1.1 ユーザ-網インターフェース規定点](image)

図3.1.1 ユーザ-網インターフェース規定点

物理的条件

(1) 主要諸元

物理的条件は、標準に準拠します。ただし、ケーブルはEIA/TIA568BまたはISO/IEC11801に準拠します。主要諸元を表3.1.1に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>配線コード</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>伝送コード</td>
</tr>
<tr>
<td>コネクタ</td>
<td>(1) CO (2) CO</td>
</tr>
<tr>
<td>符号速度</td>
<td>4B5B (1) 32Mbaud</td>
</tr>
<tr>
<td>伝送距離</td>
<td>伝送コード</td>
</tr>
<tr>
<td>伝送符号</td>
<td>伝送コード</td>
</tr>
<tr>
<td>入出力特性</td>
<td>配線コード</td>
</tr>
</tbody>
</table>

表3.1.1 主要諸元

注：(1) 100Base-TXまたは100Base-Tでは、EIA/TIA568Bに準拠します。
注：(2) 100Base-TXの場合は、EIA/TIA568Bに準拠します。
注：(3) 符号化方式により異なる。
(Ⅲ) 配線形態

ピンの 100Ω 75Ω ケーブルのカテゴリー 5 を適用します。

ビーグラフィンを表 1-1-1 に示します。

<table>
<thead>
<tr>
<th>表 1-1-1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ピン番号</td>
<td>ユーザ側識別</td>
<td>ネットワーク機器側信号</td>
</tr>
<tr>
<td>1</td>
<td>送信</td>
<td>受信</td>
</tr>
<tr>
<td>2</td>
<td>送信</td>
<td>受信</td>
</tr>
<tr>
<td>3</td>
<td>未使用</td>
<td>未使用</td>
</tr>
<tr>
<td>4</td>
<td>未使用</td>
<td>未使用</td>
</tr>
<tr>
<td>5</td>
<td>未使用</td>
<td>未使用</td>
</tr>
<tr>
<td>6</td>
<td>未使用</td>
<td>未使用</td>
</tr>
<tr>
<td>7</td>
<td>受信</td>
<td>送信</td>
</tr>
<tr>
<td>8</td>
<td>受信</td>
<td>送信</td>
</tr>
</tbody>
</table>

(Ⅳ) 電気的条件

(Ⅲ) 主要諸元

電気的条件は 表 1-1-2 と表 1-1-3 に準拠します。

その主要諸元を表 1-1-2 に示します。

<table>
<thead>
<tr>
<th>表 1-1-2 主要諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
</tr>
<tr>
<td>符号誤り率</td>
</tr>
<tr>
<td>立ち上がり時間</td>
</tr>
<tr>
<td>パルス波形</td>
</tr>
<tr>
<td>出力レベル</td>
</tr>
<tr>
<td>特性インピーダンス</td>
</tr>
<tr>
<td>送信反射減衰量</td>
</tr>
<tr>
<td>受信反射減衰量</td>
</tr>
</tbody>
</table>

| 表 1-1-3 送信反射減衰量 |
| --- | --- |
| 周波数帯域 | 反射減衰量 |
| 1-6MHz | 減衰量 > 14dB |
| 6-17MHz | 減衰量 > 12dB |
| 17-25MHz | 減衰量 > 8dB |

| 表 1-1-4 受信反射減衰量 |
| --- | --- |
| 周波数帯域 | 反射減衰量 |
| 1-6MHz | 減衰量 > 14dB |
| 6-17MHz | 減衰量 > 12dB |
| 17-25MHz | 減衰量 > 8dB |

59
表

<table>
<thead>
<tr>
<th>ポイント</th>
<th>上限時間</th>
<th>上限振幅</th>
<th>下限時間</th>
<th>下限振幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.3</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>6.3</td>
<td>1.20</td>
<td>10.5</td>
<td>0.90</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>1.20</td>
<td>23.0</td>
<td>0.50</td>
</tr>
<tr>
<td>D</td>
<td>23</td>
<td>1.05</td>
<td>36.0</td>
<td>0.75</td>
</tr>
<tr>
<td>E</td>
<td>34</td>
<td>1.20</td>
<td>53.0</td>
<td>0.60</td>
</tr>
<tr>
<td>F</td>
<td>56</td>
<td>0.95</td>
<td>87.0</td>
<td>0.60</td>
</tr>
<tr>
<td>G</td>
<td>95</td>
<td>0.92</td>
<td>99.7</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>100.3</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

時間単位：

図

表

<table>
<thead>
<tr>
<th>ポイント</th>
<th>上限時間</th>
<th>上限振幅</th>
<th>下限時間</th>
<th>下限振幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.4</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>7.9</td>
<td>1.20</td>
<td>13.1</td>
<td>0.90</td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>1.20</td>
<td>28.0</td>
<td>0.50</td>
</tr>
<tr>
<td>D</td>
<td>29</td>
<td>1.05</td>
<td>45.0</td>
<td>0.75</td>
</tr>
<tr>
<td>E</td>
<td>43</td>
<td>1.20</td>
<td>66.0</td>
<td>0.60</td>
</tr>
<tr>
<td>F</td>
<td>70</td>
<td>0.95</td>
<td>84</td>
<td>0.60</td>
</tr>
<tr>
<td>G</td>
<td>93.5</td>
<td>0.92</td>
<td>99.6</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>100.4</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

時間単位：

図
図 3.1.3 シンボルのパリス波形

表 3.1.3 シンボルコーナーポイント

<table>
<thead>
<tr>
<th>ポイント</th>
<th>上限時間</th>
<th>上限振幅</th>
<th>下限時間</th>
<th>下限振幅</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 3.1.4 シンボルのパリス波形

図 3.1.5 シンボルのパリス波形

表 3.1.5 シンボルコーナーポイント

<table>
<thead>
<tr>
<th>ポイント</th>
<th>上限時間</th>
<th>上限振幅</th>
<th>下限時間</th>
<th>下限振幅</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 3.1.6 シンボルのパリス波形
表 3.1.10 シンポルコーナーポイント

<table>
<thead>
<tr>
<th>ポイント</th>
<th>上限時間</th>
<th>上限振幅</th>
<th>下限時間</th>
<th>下限振幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.1</td>
<td>1 - 1.5</td>
<td>0</td>
<td>1 - 0.5</td>
</tr>
<tr>
<td>B</td>
<td>23.5</td>
<td>0.83</td>
<td>26.0</td>
<td>0.55</td>
</tr>
<tr>
<td>C</td>
<td>48.5</td>
<td>1.15</td>
<td>51.5</td>
<td>0.95</td>
</tr>
<tr>
<td>D</td>
<td>80.0</td>
<td>0.86</td>
<td>77.5</td>
<td>0.52</td>
</tr>
<tr>
<td>E</td>
<td>101.5</td>
<td>0</td>
<td>98.5</td>
<td>0</td>
</tr>
</tbody>
</table>

時間単位：

図 3.1.10 シンポルのパレス波形

3.1.3. 論理的条件

(1) セル配置
データはドミノ符号化され、セルベースで伝送されます。ドミノ符号化を表 3.1.11 に、セルの配置を図 3.1.11 に示します。

図 3.1.11 セルの配置
ビットに変換された符号は、常にペアを構成し、コマンドとデータの1種類の符号ペアが存在します。以下にコマンドの符号のペアを示します。

<table>
<thead>
<tr>
<th>コマンド</th>
<th>セルスタート (スケープルセット有り)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>無効 (予約)</td>
</tr>
<tr>
<td></td>
<td>無効 (予約)</td>
</tr>
<tr>
<td></td>
<td>無効 (予約)</td>
</tr>
<tr>
<td></td>
<td>セルスタート (スケープルセット無し)</td>
</tr>
<tr>
<td></td>
<td>無効 (予約)</td>
</tr>
</tbody>
</table>

3.1.4. セル同期とスケープル

本インターフェースでは、セクションによるセル同期ではなく、セルの先頭に または または を挿入し、これによりセルの位置を識別しセル同期を確立します。変換前にコマンドを除くピットに対して、生成多項式 を用いてスケープルします。スケープルのブロック構成例を図 に示します。
また、送信がやのスクランブルと受信側のデスクランブルのシーケンスの同期を確立するためにスクランブルデスクランブルをβの送受でリセットします。そのリセット間隔は、前のスクランブルリセットを行います。

受信時は、βーβーを全てαー(αーαーαー)にします。

△△△△△ クロックタイミング

網のクロック(αーαー)を端末に供給するための同期信号としてサービスノートからβー方向にβーαーにαーαーαーαーのリセットを伝送します。αーαーαーαーは他のデータ及びコマンドが優先され、図△△△△に示すようにセルの中に挿入されます。αーαーαーαーαーαーαーαーαーαーαー中はコマンド(βーβーβー及びαー以外のコマンド)をした場合、このセルは廃棄される場合があります。

△△△△△ 速度調整

伝送すべきデータが無いときは、速度調整セルを挿入せずに、αーαーαーαーαーαーαー以外の任意のデータを挿入します。
インターフェース

インターフェースは、物理的、電気的及び論理的条件から構成されます。
インターフェースにおける規定点を図に示します。

(1) 物理的条件
同軸ケーブルの状態及び同軸ケーブルとサービスノードを接続するためのコネクタ等の規格

(2) 電気的条件
規格ケーブルとサービスノードを接続するための信号レベル等の規格

(3) 論理的条件
規格ケーブルとサービスノード間で信号を送受信するための伝送フレームの構成

図 ユーザ間インタフェース規定点

物理的条件

(1) 主要諸元
主要諸元を表に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>上り下り方向・本</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>同軸ケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>同軸コネクタ</td>
</tr>
<tr>
<td>伝送速度</td>
<td>44.736Mbit/s</td>
</tr>
<tr>
<td>クロック精度</td>
<td>±20ppm</td>
</tr>
<tr>
<td>伝送符号</td>
<td>5.2.2.2符号</td>
</tr>
<tr>
<td>入出力特性</td>
<td>参照</td>
</tr>
</tbody>
</table>

配線形態
传送媒体には・本の同軸ケーブルを適用します。

同軸ケーブル
本インタフェースに適用される同軸ケーブルは・同軸ケーブルです。

コネクタ
送信信号、受信信号それぞれに対して、同軸コネクタ（JIS C 02-1976 国際規格）に接続します。
電気的条件

(1) 主要諸元
電気的条件の主要諸元を表に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>传送符号</td>
<td></td>
</tr>
<tr>
<td>立ち上がりレベル</td>
<td>以下</td>
</tr>
<tr>
<td>負荷インピーダンス</td>
<td>純抵抗</td>
</tr>
<tr>
<td>バルススイッチ</td>
<td>図参照</td>
</tr>
<tr>
<td>出力レベル</td>
<td>膨音帯域で測定した場合に以下の周波数特性を満足する</td>
</tr>
<tr>
<td>入力端測定</td>
<td>伝送路損失</td>
</tr>
<tr>
<td>フレーム同期方法</td>
<td>フレーム同期パターンの照合</td>
</tr>
</tbody>
</table>

（注）この範囲の損失に対応するため、サービスノードのインパーサースにハイレベルローレベル切替スイッチを設けています。

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T Value of Curve</td>
<td></td>
</tr>
<tr>
<td>Lower curve</td>
<td>T －0.36</td>
</tr>
<tr>
<td></td>
<td>－0.36 －T 0.28</td>
</tr>
<tr>
<td></td>
<td>0.28 －T 0</td>
</tr>
<tr>
<td>Upper curve</td>
<td>T 0</td>
</tr>
<tr>
<td></td>
<td>0.5 [1+sin(ƒ/2)]</td>
</tr>
</tbody>
</table>

図 出入力波形
論理的条件

(1) フレーム構成

図のフレーム構成

マルチフレーム（図3.2.3）

サブフレーム

第①
サブフレーム
第②
サブフレーム
第③
サブフレーム
第④
サブフレーム
第⑤
サブフレーム
第⑥
サブフレーム
第⑦
サブフレーム

フレーム構成

オーバヘッド部分：

ペイロード部分：

図 3.2.3 図のフレーム構成
(G) オーバヘッド

オーバヘッドの種類

<table>
<thead>
<tr>
<th>オーバヘッド</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>フレーム内</td>
<td>フレーム同期ビット</td>
<td>前のフレームのペイロードデータ+1バイト演算</td>
</tr>
<tr>
<td></td>
<td>サブフレーム同期ビット</td>
<td>前のフレームのペイロードデータ+1バイト演算</td>
</tr>
<tr>
<td>パラティビット</td>
<td>パラティビット</td>
<td>正常:1</td>
</tr>
<tr>
<td></td>
<td>ビット</td>
<td>前のフレームで0が発生していない場合 表[3.3]参照</td>
</tr>
<tr>
<td></td>
<td>ビット</td>
<td>前のフレームで0が発生している場合 表[3.3]参照</td>
</tr>
</tbody>
</table>

パスオーバヘッド指示ビット

<table>
<thead>
<tr>
<th>パスオーバヘッドラベル</th>
<th>パスオーバヘッドラベル</th>
<th>奇数モード 表[3.3]参照</th>
</tr>
</thead>
<tbody>
<tr>
<td>バスオーバヘッドステータス</td>
<td>バスオーバヘッドステータス</td>
<td>前のフレームの0とパスオーバヘッドラベルが演算</td>
</tr>
<tr>
<td>サイクル・スタックポイント</td>
<td>サイクル・スタックポイント</td>
<td>トーラ長を指定 表[3.3]参照</td>
</tr>
<tr>
<td>未使用</td>
<td>未使用</td>
<td>送信:0 受信:無視</td>
</tr>
<tr>
<td>未使用</td>
<td>未使用</td>
<td>送信:無視 受信:無視</td>
</tr>
<tr>
<td>未使用</td>
<td>未使用</td>
<td>送信:無視 受信:無視</td>
</tr>
<tr>
<td>未使用</td>
<td>未使用</td>
<td>送信:無視 受信:無視</td>
</tr>
</tbody>
</table>

プラシヘッド

<table>
<thead>
<tr>
<th>プラシヘッド</th>
<th>13</th>
<th>14nibbles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1100</td>
</tr>
</tbody>
</table>
表 3.2.4 ビットの割り当て (フレーム構成でビットが発生しない場合)

<table>
<thead>
<tr>
<th>種類</th>
<th>内容</th>
<th>記事</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>アプリケーション指示チャネル</td>
<td>□</td>
</tr>
<tr>
<td>01</td>
<td>ネットワーク要求</td>
<td>□</td>
</tr>
</tbody>
</table>
| 11 | 遠隔アラーム コントロールビット (未使用) | 送信側：□
| | | 受信側 無視 |
| 12 | 未使用 | □ |
| 13 | アラーム (FEAC) | □ |

表 3.2.5 ビットの割り当て (フレーム構成でビットが発生している場合)

<table>
<thead>
<tr>
<th>種類</th>
<th>内容</th>
<th>記事</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>ビット</td>
<td>全て□</td>
</tr>
</tbody>
</table>

表 3.2.6 パスオーバーヘッド指示コード

<table>
<thead>
<tr>
<th>パスオーバーヘッド指示バイト</th>
<th>パスオーバーヘッドラベル+リガーブ+バリティ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111</td>
<td>1 13</td>
<td></td>
</tr>
<tr>
<td>00000000</td>
<td>2 14</td>
<td></td>
</tr>
<tr>
<td>01100110</td>
<td>3 "ステックアップ" 13</td>
<td></td>
</tr>
<tr>
<td>10011001</td>
<td>2 "ステックアップ" 14</td>
<td></td>
</tr>
</tbody>
</table>

表 3.2.7 ビットの割り当て (フレームのサイクル/スタックアップタ)コード

<table>
<thead>
<tr>
<th>□□コード</th>
<th>サイクル中のフレーム</th>
<th>トーラス長</th>
</tr>
</thead>
</table>
セル同期とスクランブル

フレームの確定においてセルの位置を確定し、セル同期を確立します。なお、レイヤで使用される有効セルが存在しない場合には、フレームのペイロードへアイドルを挿入し、セル速度を調整します。セルのペイロードに対して自己同期スクランブル、デスクランブルを行ってください。スクランブル、デスクランブルの方法は、ユーザインタフェースを参照してください。

空きセル

レイヤから有効セルが提供されない時の速度調整は空きセルを挿入します。空きセルに対して受付側では、照会を合わせた同期のみ行います。空きセル識別のためのヘッダパターンを下記に示します。

<table>
<thead>
<tr>
<th>ヘッダパターン</th>
<th>バイト①</th>
<th>バイト②</th>
<th>バイト③</th>
<th>バイト④</th>
<th>バイト⑤</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000100</td>
<td>HEC</td>
</tr>
</tbody>
</table>

情報フィールドの内容は00000000の回繰り返し

注：空きセルはレイヤに渡されないので、レイヤの観点からはヘッダ及びペイロードの値は何も意味を持ちません。
インタフェース

インタフェースは物理的、光学的及び論理的条件から構成されます。

(1) 物理的条件
光ファイバの仕様及び光ファイバとサービスノードを接続するためのコネクタ等の規格

(2) 光学的条件
光ファイバとサービスノードを接続するための光信号レベル等の規格

(3) 論理的条件
光ファイバとサービスノード間で信号を送受信するための伝送フレーム構成等

図 3.3.1 ユーザ・網インタフェース規定点

物理的条件

(1) 主要諸元

主要諸元を表 3.3.1 に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>二芯 (上り下り格方向 二芯)</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>四芯 單心光ファイバコネクタ</td>
</tr>
<tr>
<td>伝送速度</td>
<td>2.552Mbit/s</td>
</tr>
<tr>
<td>クロック精度</td>
<td>± 20ppm</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクロールレッド・値・フラグ符号</td>
</tr>
<tr>
<td>入出力特性</td>
<td>表 参照 表 参照 参照</td>
</tr>
</tbody>
</table>

(2) 配線形態

伝送媒体には 二芯の光ファイバケーブルを適用します。

(2) 光ファイバケーブル

光ファイバケーブルは、① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩型光ファイバケーブル（以下、ケーブル）及び⑪ 型光ファイバケーブル（以下、ケーブル）及び⑫ 型光ファイバケーブル
接続コネクタ

光送受信用コネクタとして、リング型単心光ファイバコネクタ（GIGI）の端（GIGI及びGGII）で接続します。

光学的条件

主要諸元

ユーザ-側インターフェースにおける光学的条件は、標準によって異なるため、ユーザ-側インターフェースにおいては標準化されている研究所（NTT、ATM-Forum）に準拠します。その主要諸元を表に示します。各パラメータは以下の通りです。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td></td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブル値0位・0位置符号（注）</td>
</tr>
<tr>
<td>発光条件</td>
<td>正論理値0位は発光</td>
</tr>
<tr>
<td>非発光</td>
<td>正論理値0位は非発光</td>
</tr>
<tr>
<td>発光中心波長</td>
<td></td>
</tr>
<tr>
<td>平均送信電力</td>
<td></td>
</tr>
<tr>
<td>送信波長</td>
<td></td>
</tr>
<tr>
<td>消光比</td>
<td></td>
</tr>
<tr>
<td>最大受光電力（平均値）</td>
<td></td>
</tr>
<tr>
<td>最小受光電力（平均値）</td>
<td></td>
</tr>
<tr>
<td>パワーベナルティ</td>
<td></td>
</tr>
<tr>
<td>ジッタ</td>
<td></td>
</tr>
</tbody>
</table>

（注）スクランブル値0位・0位置符号

この符号は、0位・0位置の論理値0の場合は0位・0位置、論理値1の場合は1位・1位置とする符号形式です。
<table>
<thead>
<tr>
<th>論理値</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>波形</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(注) 論理規定は正論理です。すなわち、0番符号0時に光、1番符号1時に光とします。
(注)(注) 論理規定は正論理です。すなわち、0番符号0時に光、1番符号1時に光とします。

図 4.1 10符号の説明

図 4.2 ジッタ特性 (上記標準 ±0.1UI)

図 4.3 ジッタ特性 (下記標準 ±0.1UI)
(c) 光出力条件
サービスノードからネットワーク側に送出する光信号の条件を表 74 に示します。
なお、スクランブル化によって変調されたマーク率以下の信号での特性です。

表 74 光出力規格

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均送信電力</td>
<td>マスクパターン規定 (図 74 参照)</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定 (図 74 参照)</td>
</tr>
<tr>
<td>消光比</td>
<td>マスクパターン規定 (図 74 参照)</td>
</tr>
</tbody>
</table>

測定条件： マスクパターン が伝送ビットレートで異なる場合
試験パターン： スクランブルド バルス

* 光 マスクは必要に応じて用います。
** カットオフ周波数 (減衰点) が入力公称ビットレートの倍数

図 74 マスクパターン規定 (標準 図 74 参照)
図 3.3.5 光波形例

(1) 光入力条件
サービスネットワークから受信する光信号の条件を表 3.3.4 に示します。

表 3.3.4 光入力条件

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大受光電力</td>
<td>規格に従う</td>
</tr>
<tr>
<td>(平均値)</td>
<td>10dBm</td>
</tr>
<tr>
<td>最小受光電力</td>
<td>規格に従う</td>
</tr>
<tr>
<td>(平均値)</td>
<td>-14dBm</td>
</tr>
</tbody>
</table>

(2) パワーベナルティ
受信器におけるパワーベナルティは 3.3.4 以下です。

パワーベナルティ送信スペクトラムの拡がり及びファイバ波長分散に起因する受信劣化等、特性が劣化し、それによって受信能力の低下を招くことをいいます。規格に従う必要がある、詳細は ATM-Forum の物理層仕様を参照}
論理的条件

（1）フレーム構成
フレーム構成及びマッピング方法は、標準に準拠します。
位も入力にマッピングされるバスは、ののみです。
のフレーム構成を図に示します。
● オーバヘッド

オーバヘッドのパイト定義は、割り当て者によって異なります。オーバヘッドのパイト定義を表 77-7に示します。

● ポイント

ポイント値及びポイント動作は、割り当て者によって異なります。なお、ポイント値に設定、ポイント生成において重複した自詡が発生した場合、以下のとおりとします。

【ポイント受信規定について】
・ オーバヘッドの特性により、ポイント値の多くが反転、またはポイント値の多くが反転した場合は、スタッフを有効とし、スタッフ操作は無視します。
・ ビットポイントの多くが反転であり、かつビットの多くが反転した場合は、スタッフ操作を無視します。
・ ビットポイントの変更状態である場合で通常のポイント値（0-100）を超えたときは、ポイント値は変更しません。
・ 新しいポイント値が、回連続して一致して、なおかつ通常値を超えた場合は、ポイント値は変更しません。

【ポイント生成について】
オーバヘッドのオーバヘッドで規定されているとおり、ポイント値の増減操作は、スタッフまたはスタッフによるポイント値の増減操作後、フレーム内に要求があった場合においても、この操作は無視します。

● オーバヘッド

オーバヘッドのオーバヘッドのパイト定義を表 77-7に示します。
表 3.3.5 STM-1 の POH パイド定義

<table>
<thead>
<tr>
<th>バイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>フレーム同期</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>フレーム同期</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未使用</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>符号誤り監視</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>ポイントポインタ</td>
<td>規定値</td>
</tr>
<tr>
<td>00</td>
<td>正負フラグ指示</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>パス 1 (11111111)</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>ポインタ動作</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>セクション誤り監視</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>AU-4</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

* 未定義とします。　

表 3.3.6 VC-4 の POH パイド定義

<table>
<thead>
<tr>
<th>バイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>アクセスポイント ID</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>符号誤り監視</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>シグナルレベル</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>サービスノード:サービスノード</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>サービスノード:サービスノード</td>
<td>*</td>
</tr>
<tr>
<td>00</td>
<td>未定義</td>
<td>*</td>
</tr>
</tbody>
</table>

* 未定義とします。　

78
同期

(i) フレーム同期
フレーム同期方式を表 3.3.4. に示します。

表 3.3.4. フレーム同期
フレーム同期パターン	パターン選択法・パターン照合法	フレーム同期保護（注 ① ②）
○○○○○○○○○○○○○○〇 | ○ビット即時シフト方式（注 ①） | リセット方式 的前提段
○○○○○○○○○○○○○○〇 | ○Q ○Q の ○ビット同時照合方式 | 前方 前段

(注) 前方 前段とは、フレーム同期状態においてフレーム同期パターン照合結果、回連続不一致を検出したとき、ハーティング状態に移ることをいいます。
(注) 後方 前段とは、ハーティング状態においてフレーム同期パターン照合結果、回連続一致を検出したとき、同期状態に移ることをいいます。
(注) ○ビット即時シフト方式と同等な同期復帰特性を有するフレーム同期方式でもかいません。

(ii) 網同期
同期タイミングを網のクロックから抽出する従属同期方式で、○Q を動作させる必要があります。すなわち、○Q は網からの信号をビット及び、フレーム同期のタイミングを自己抽出し、それに従って送信信号を送出する必要があります。

セグメント同期とスクランブ

(i) フレームスクランブ
○○○○標準のフレーム同期に準拠します。スクランブ、シーケンス長○○○○のフレーム同期スクランブで、生成多項式は 1 + 0^4 + 0^5 です。図 3.3.8.にフレーム同期型スクランブの構成例を示します。
スクランブは、○○○○の最初の行、最後のビットに続くビットの第 0 ビット目で○○○○に初期化します。
このビットとスクランブは関連する全ての連続するビットは、スクランブの○の出力と排他的論理和を取り出力します。スクランブは○○○○フレームに対して動作しますが、○○○○の最初の行はスクランブしません。

図 3.3.8. フレーム同期スクランブ (構成例)
(C) セルスクラウスーラ

■ セル同期とスクラウラの目的

ヘッダ（ヘッダビットやヘッダビットを用いたセル同期（物理レイヤのパイロードからセルを抽出する機能）により、セルの境界を識別します。

スクラウラはヘッダによるセル同期の確立やビット誤りに対するヘッダビットの短縮回路符号を用いたヘッダビットと相互関係から実現されます。

図 3.3.8 セル同期状態遷移図に詳しい。

図 3.3.8 セル同期状態遷移図

(注) 正しいセルとはヘッダビット誤りなく、訂正されないように見えます。

同期状態のプレミング、ハンティング状態、全同期状態のセルは物理レイヤで発行します。

■ セル同期の詳細

① ハンティング状態での同期処理は、仮定したヘッダに対し、ヘッダをシンドロームがゼロに等しい状態であるかをビットごとに照合することにより実行されます。①同一致が検出されると次の前同期状態に遷移します。

② 前同期状態での同期処理は、正しいヘッダであるかどうかを次のヘッダビットごとに照合することにより実行します。処理は、連続的に回正し回文であることを確認するまで繰り返します。回文が検出された場合、処理はハンティング状態に戻ります。

③ 同期状態では、ヘッダビット每に検査し、同期的に図 3 回文が検出された時、セル同期が遅れたものとします。セル同期主要扱を表 3.3.8 に示します。

表 3.3.8 セル同期主要扱

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>セル同期方式</td>
<td>ヘッダのみを用いた同期方式</td>
</tr>
<tr>
<td>ハンティング状態からの前同期ときへの遷移</td>
<td>正しいヘッダを持つセルをセル受信することにより前同期状態に遷移</td>
</tr>
<tr>
<td>前同期状態から同期状態への遷移</td>
<td>回文連続数回正しヘッダを受信</td>
</tr>
<tr>
<td>同期状態からハンティング状態への遷移</td>
<td>回文連続ヘッダ誤りを受信</td>
</tr>
</tbody>
</table>

80
(イ) スクランブル動作
次の多項式を自己同期スクランブルとして用います。

すなわち、送信側ではヘッダのビットを0進数の多項式で表し、これと0進数の多項式との排他論理(⊕)をと送信します。受信側ではこの逆の演算を行います。

セル同期の状態遷移図に関連するスクランブル動作は以下のとおりです。

- スクランブルはヘッダのビットのみスクランブルします。
- ヘッダのビット間は、スクランブル動作を停止し、スクランブル状態を保持します。
- ハンティング状態においては、スクランブル動作を停止します。
- 前同期と同期状態では、ヘッダはヘッダの長さに相当するビット数の間だけ動作し、次のヘッダと想定される期間は停止します。

スクランブル/デスクランブル主要諸元を、表に示します。

(注) 網はユーザから受け取ったセルを必ずデスクランブルします。また、網がユーザにセルを送出するときには、必ずスクランブルします。

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>スクランブル範囲</td>
<td>ヘッダ(0ビット)を除く0ビットの情報フィールド全体</td>
</tr>
<tr>
<td>生成多項式</td>
<td>0200</td>
</tr>
<tr>
<td>同期方式</td>
<td>自己同期方式</td>
</tr>
<tr>
<td>動作条件</td>
<td>ハンティング状態では、デスクランブルを停止。前同期と同期状態では、ヘッダの長さに相当するビット数の間だけ動作し、次のヘッダと想定される時間停止する。</td>
</tr>
</tbody>
</table>

(ロ) 互いの機能は、セルヘッダ全体に対して、
- ビットの誤り訂正
- 複数ビットの誤り検出
の2つの能力を有します。

送信側ではフィールド値を計算します。受信側では、図に示すように訂正モードと検出モードの2つのモードを持ちます。通常は訂正モードであり、各セルヘッダの監視を行い、誤り検出されると、訂正モードでは、誤りのあるセルを検出し、誤りが検出されなかった受信側は訂正モードに移行します。検出モードでは、検查ビットの誤りがあるセルを検出し、誤りが検出されないと、受信側は無動作とし、訂正を行わず、他セルを処理する方法を示します。

図に示すように、誤り検出と訂正モードの状態遷移図を示します。
セルヘッダの誤り検査のフローチャートを図3.3.11に示します。

セッティングによる誤り検出 訂正機能によって
- ビットヘッダ誤りの復旧
- バースト誤り状態での誤配の低減

を実現します。

(2) セルヘッダ機能シーケンス生成
送信側では、セルヘッダ全体に対して値を計算し、結果を所定のヘッダフィールドに挿入します。ヘッダ誤りの記述に用いられる符号は、巡回符号の特性に基づいています。要素を持つ符号後の各要素は、次の多項式の係数となります。これらの係数は、分で、多項式演算はモジュロの演算によって行われます。フィールドのヘッダの内容を表す多項式を、ヘッダの第 ビットが最高次の項の係数となるよう生成されます。フィールドは、ビットのビット列からなります。それらは、以内的内容に をかけ、生成多項式のすで割りと余りです。

送信側では、余りを演算する素子のレジスタは、初期値が全てに設定され、生成多項式でととしてフィールド以外の内容を割り算することにより更新されます。演算結果の余りのビットの として送信されます。

ビットスリップ時のセル同期の性能を改善するために、以下の方法をとります。
- 生成多項式によって演算される ビットは、ヘッダの最終パイクに導入される前に、ビットパターンが加算されます。
- そのパターンは、です。
- 受信側では、ヘッダのシンドローム演算を行う前に、ビットのから同じパターンを減算（加算と等価です）します。

この演算は、誤り検出・訂正能力に対して影響を与えません。

の受信規定を表3.3.10に、誤りビット判定法（シンドローム演算結果から誤りビット判定します）を表3.3.11に示します。
表 送受信規定
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>誤り訂正検出符号</td>
<td>生成多項式 $x^8 + x^2 + 1$ の x^8 を用いる。</td>
</tr>
<tr>
<td>送信側規定</td>
<td>以下の手順でCRCフィールドを生成する。</td>
</tr>
<tr>
<td></td>
<td>(1) セルのヘッダ パイト, 伝送順の先頭 (第 1 パイトの第 0 ビット) を最強次として多項式を表現する。</td>
</tr>
<tr>
<td></td>
<td>(2) 上記多項式にX^8 をかける。</td>
</tr>
<tr>
<td></td>
<td>(3) 生成多項式 $x^3 + x^2 + x + 1$ で割り 余りの多項式を求める。</td>
</tr>
<tr>
<td></td>
<td>(4) 余りの多項式的係数 (1 パイト) にエンコードをモジュロ 2 で除算し、結果をCRCフィールドに取容する。</td>
</tr>
</tbody>
</table>

表 誤りビットの判定
<table>
<thead>
<tr>
<th>シンドローム</th>
<th>誤り位置</th>
<th>シンドローム</th>
<th>誤り位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビット</td>
<td>パイト</td>
<td>ビット</td>
<td>パイト</td>
</tr>
<tr>
<td>00000000</td>
<td>0</td>
<td>00000000</td>
<td>0</td>
</tr>
<tr>
<td>00000001</td>
<td>0</td>
<td>00000001</td>
<td>0</td>
</tr>
<tr>
<td>00000001</td>
<td>1</td>
<td>00000001</td>
<td>1</td>
</tr>
<tr>
<td>00000010</td>
<td>0</td>
<td>00000010</td>
<td>0</td>
</tr>
<tr>
<td>00000011</td>
<td>0</td>
<td>00000011</td>
<td>0</td>
</tr>
<tr>
<td>00000100</td>
<td>0</td>
<td>00000100</td>
<td>0</td>
</tr>
<tr>
<td>00000101</td>
<td>0</td>
<td>00000101</td>
<td>0</td>
</tr>
<tr>
<td>00000110</td>
<td>0</td>
<td>00000110</td>
<td>0</td>
</tr>
<tr>
<td>00000111</td>
<td>0</td>
<td>00000111</td>
<td>0</td>
</tr>
<tr>
<td>00001000</td>
<td>0</td>
<td>00001000</td>
<td>0</td>
</tr>
<tr>
<td>00001001</td>
<td>0</td>
<td>00001001</td>
<td>0</td>
</tr>
<tr>
<td>00011100</td>
<td>0</td>
<td>00011100</td>
<td>0</td>
</tr>
<tr>
<td>00011101</td>
<td>0</td>
<td>00011101</td>
<td>0</td>
</tr>
<tr>
<td>00011110</td>
<td>0</td>
<td>00011110</td>
<td>0</td>
</tr>
<tr>
<td>00011111</td>
<td>0</td>
<td>00011111</td>
<td>0</td>
</tr>
<tr>
<td>00101100</td>
<td>0</td>
<td>00101100</td>
<td>0</td>
</tr>
<tr>
<td>00101101</td>
<td>0</td>
<td>00101101</td>
<td>0</td>
</tr>
<tr>
<td>00101110</td>
<td>0</td>
<td>00101110</td>
<td>0</td>
</tr>
<tr>
<td>00101111</td>
<td>0</td>
<td>00101111</td>
<td>0</td>
</tr>
<tr>
<td>00110110</td>
<td>0</td>
<td>00110110</td>
<td>0</td>
</tr>
<tr>
<td>00110111</td>
<td>0</td>
<td>00110111</td>
<td>0</td>
</tr>
<tr>
<td>00111000</td>
<td>0</td>
<td>00111000</td>
<td>0</td>
</tr>
<tr>
<td>00111001</td>
<td>0</td>
<td>00111001</td>
<td>0</td>
</tr>
<tr>
<td>00111010</td>
<td>0</td>
<td>00111010</td>
<td>0</td>
</tr>
<tr>
<td>00111011</td>
<td>0</td>
<td>00111011</td>
<td>0</td>
</tr>
</tbody>
</table>

注: 誤り検出は最高のビットを検出し、その後のビットを無視する。
空きセル

レイヤから有効セルが提供されない場合、速度調整のために空きセルを挿入します。受信側では空きセルに対しては、ヘッダの照合を含むセル同期のみを行います。

空きセル識別のためにヘッダパターンを表に示します。

<table>
<thead>
<tr>
<th>バイト</th>
<th>バイト</th>
<th>バイト</th>
<th>バイト</th>
<th>バイト</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヘッダパターン</td>
<td></td>
<td></td>
<td></td>
<td>(有意コード)</td>
</tr>
</tbody>
</table>

ベイロードの内容は表のように0の値を繰り返し

（注）レイヤには空きセルは渡されないので、レイヤの観点からはヘッダ及びベイロードの値は何も意味を持ちません。
インタフェース

インタフェースは物理的、光学的及び論理的条件から構成されます。

(1) 物理的条件
光ファイバの仕様及び光ファイバとサービスノードを接続するためのコネクタ等の規格

(2) 光学的条件
光ファイバとサービスノードを接続するための光信号レベル等の規格

(3) 論理的条件
光ファイバとサービスノード間で信号を送受信するための伝送フレーム構成等

!図 ユーザ網インタフェース規定点

物理的条件

(1) 主要諸元
主要諸元を表に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>配線形態</td>
<td>①芯（上り下り各方向 ①芯）</td>
</tr>
<tr>
<td>伝送媒体</td>
<td>光ファイバケーブル</td>
</tr>
<tr>
<td>コネクタ</td>
<td>①形 単心光ファイバコネクタ</td>
</tr>
<tr>
<td>伝送速度</td>
<td>622.08Mbit/s</td>
</tr>
<tr>
<td>クロック精度</td>
<td>±20ppm</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブル値±符号</td>
</tr>
<tr>
<td>入出力特性</td>
<td>表参照</td>
</tr>
</tbody>
</table>

(2) 配線形態
伝送媒体には ①芯の光ファイバケーブルを適用します。

(3) 光ファイバケーブル
光ファイバケーブルは、①芯 ③芯以下 REFERENCE 型光ファイバケーブル（以下、①芯ケーブル）を ①芯に相当します。

注 ①芯規格 REFERENCE に相当します。
(C) 接続コネクタ
光送受信用コネクタとして、型単心光ファイバコネクタ（図2-2-1）の個（図2-2-2及び図2-2-3）で接続します。

(2) 光学的条件

(3) 主要諸元
ユーザーアンタフェースにおける光学的条件は図2-2-1に準拠します。その主要諸元を表2-2-1に示します。

表 2-2-1 主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>インターフェース速度</td>
<td>標準値</td>
</tr>
<tr>
<td>伝送符号</td>
<td>スクランブル値（注）</td>
</tr>
<tr>
<td>発光条件</td>
<td>正論値: 論理値を発光</td>
</tr>
<tr>
<td></td>
<td>論理値を非発光</td>
</tr>
<tr>
<td>発光中心波長</td>
<td>未定</td>
</tr>
<tr>
<td>平均送信電力</td>
<td>未定</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン規定（図2-2-2参照）</td>
</tr>
<tr>
<td>消光比</td>
<td>未定</td>
</tr>
<tr>
<td>最大受光電力</td>
<td>未定</td>
</tr>
<tr>
<td>（平均値）</td>
<td>未定</td>
</tr>
<tr>
<td>最小受光電力</td>
<td>未定</td>
</tr>
<tr>
<td>（平均値）</td>
<td>未定</td>
</tr>
<tr>
<td>パワーベリアルティ</td>
<td>未定</td>
</tr>
<tr>
<td>ジッド</td>
<td>図2-2-3参照（図2-2-1参照）</td>
</tr>
</tbody>
</table>

![ジッド特性](image)

![ジッド](image)
(Ⅱ) 光出力条件
サービスノードから ポート側に送出する光信号の条件を表 に示します。
なお、スクリプト化処理によって変調されたマーク率 信号の特性です。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均送信電力</td>
<td>規格上限</td>
</tr>
<tr>
<td>送信波形</td>
<td>マスクパターン指定 (図 参照)</td>
</tr>
<tr>
<td>消光比</td>
<td>以上</td>
</tr>
</tbody>
</table>

測定条件： が伝送ビットレートの 次のトムソンフィルタ
試験パターン： スクリプト値

図 マスクパターン指定 (標準 標準)

* 光 は必要に応じて用います。
* カットオフ周波数 (減衰点) が入力公称ビットレートの 倍

(Ⅲ) 光入力条件
サービスノードが受信する光信号の条件を表 に示します。

<table>
<thead>
<tr>
<th>項目</th>
<th>規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大受光電力 (平均値)</td>
<td></td>
</tr>
<tr>
<td>最小受光電力 (平均値)</td>
<td></td>
</tr>
</tbody>
</table>

(Ⅳ) パワーペナルティ
受信器におけるパワーベナルティは 以下です。
詳細は インターフェース 項を参照してください。
論理的条件

(1) フレーム構成
フレーム構成及びマッピング方法は、標準規格に準拠します。ことにマッピングされるバスは、のバスのみです。
のフレーム構成を図 に示します。

(2) オーバーヘッド
オーバーヘッドの種類
・ セグメントオーバーヘッド
・ ヴィーシャルオーバーヘッド
オーバーヘッドの詳細
のセグメントオーバーヘッドの配置図を図 に示します。
● ポーティーヘッド
 ポーティーヘッドのバイト定義は、図1の要旨に準拠します。
 以下のバイト定義を表1に示します。

● ポインタ
 ポインタ値及びポインタ動作は、図2の要旨に準拠します。
 なお、ポインタ受信規定、ポインタ生成において重複した自称が発生した場合、
 以下の通りとします。

【ポインタ受信規定について】
・ 受信ポインタが変更あり状態（△△△）かつピットポインタの多くが反転、または△
 ピットポインタの多くが反転した場合は、△△△を有効とし、スタップ操作は無視します。
・ ピットポインタの多くが反転でありかつピットの多くが反転した場合は、スタップ
 操作を無視します。
・ 受信ポインタが変更あり状態である場合で通常のポインタ値（△△△）を超えたときは
 ポインタ値は変更しません。
・ 新しいポインタ値が△回連続して一致して、なおかつ通常値を超えた場合は
 ポインタ値は変更しません。

【ポインタ生成について】
図2の要旨に準拠し、管理されているとおり、ポインタ値の増減操作は、△△△または
スタップによるポインタ値の増減操作後△フレーム内に要求があった場合においても
この操作は無視します。

● ポーティーヘッド
 ポーティーヘッドのバイト定義を表1に示します。
表 3.4.4 VC-4-4cのPOHパイト定義

<table>
<thead>
<tr>
<th>パイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>フレーム同期</td>
<td>未使用</td>
</tr>
<tr>
<td>B2</td>
<td>フレーム同期</td>
<td>未使用</td>
</tr>
<tr>
<td>J0</td>
<td>未使用</td>
<td>未定義</td>
</tr>
<tr>
<td>K1</td>
<td>中継セクションの誤り監視</td>
<td>未定義</td>
</tr>
<tr>
<td>Z0</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>E1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>S1</td>
<td>ポインタ動作</td>
<td>負スタック用パイト</td>
</tr>
<tr>
<td>M1</td>
<td>セクション誤り監視</td>
<td>未定義</td>
</tr>
<tr>
<td>E2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>F3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>K3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>G1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>F1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>G2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N5</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N6</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N7</td>
<td>未定義</td>
<td>未定義</td>
</tr>
</tbody>
</table>

表 3.4.5 VC-4-4cのPOHパイト定義

<table>
<thead>
<tr>
<th>パイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>フレーム同期</td>
<td>未使用</td>
</tr>
<tr>
<td>B2</td>
<td>フレーム同期</td>
<td>未使用</td>
</tr>
<tr>
<td>J0</td>
<td>未使用</td>
<td>未定義</td>
</tr>
<tr>
<td>K1</td>
<td>中継セクションの誤り監視</td>
<td>未定義</td>
</tr>
<tr>
<td>Z0</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>E1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>S1</td>
<td>ポインタ動作</td>
<td>負スタック用パイト</td>
</tr>
<tr>
<td>M1</td>
<td>セクション誤り監視</td>
<td>未定義</td>
</tr>
<tr>
<td>E2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>F3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>K3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>G1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>F1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>G2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N5</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N6</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N7</td>
<td>未定義</td>
<td>未定義</td>
</tr>
</tbody>
</table>

3.4.5 VC-4-4cのPOHパイト定義

<table>
<thead>
<tr>
<th>パイト</th>
<th>機能</th>
<th>規定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>フレーム同期</td>
<td>未使用</td>
</tr>
<tr>
<td>B2</td>
<td>フレーム同期</td>
<td>未使用</td>
</tr>
<tr>
<td>J0</td>
<td>未使用</td>
<td>未定義</td>
</tr>
<tr>
<td>K1</td>
<td>中継セクションの誤り監視</td>
<td>未定義</td>
</tr>
<tr>
<td>Z0</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>E1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>D4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>S1</td>
<td>ポインタ動作</td>
<td>負スタック用パイト</td>
</tr>
<tr>
<td>M1</td>
<td>セクション誤り監視</td>
<td>未定義</td>
</tr>
<tr>
<td>E2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>H4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>F3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>K3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>G1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>F1</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>G2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N2</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N3</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N4</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N5</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N6</td>
<td>未定義</td>
<td>未定義</td>
</tr>
<tr>
<td>N7</td>
<td>未定義</td>
<td>未定義</td>
</tr>
</tbody>
</table>

* : 3.4.5 サービスノード のサービスノード方向は 3.4.4 サービスノード のサービスノード方向に設定されます。
* : 3.4.4 サービスノード のサービスノード方向に設定されます。
同期

(1) フレーム同期
フレーム同期方式は、応答インタフェース "ｸﾝ-fashion" 項を参照してください。

(2) 網同期
同期タイミングを網のクロックから抽出する従属同期方式で、"ｸﾝ-fashion"を動作させる必要があります。

セル同期とスクランブル

(1) フレームスクランブル
フレームスクランブルは、応答インタフェース "ｸﾝ-fashion" 項を参照してください。

(2) セルスクランブル
セルスクランブルは、応答インタフェース "ｸﾝ-fashion" 項を参照してください。

(3) スクランブル動作
スクランブル動作は、応答インタフェース "ｸﾝ-fashion" 項を参照してください。

空きセル

空きセルは、応答インタフェース "ｸﾝ-fashion" 項を参照してください。